Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(B=x\left(x-2\right)y\left(y+6\right)+12x^2-24x+3y^2+18y+36\)
\(=\left(x^2-2x\right)\left(y^2+6y\right)+12\left(x^2-2x\right)+3\left(y^2+6y+12\right)+12\)
\(=\left(x^2-2x\right)\left(y^2+6y+12\right)+3\left(y^2+6y+12\right)+12\)
\(=\left(x^2-2x+3\right)\left(y^2+6y+12\right)+12\)
\(=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]+12\ge2.3+12=18\)
\(P = xy(x - 2)(y+6) + 12x^2 – 24x + 3y^2 + 18y + 36 \)
\(= x^2.y^2 + 6x^2y - 2xy^2 - 12xy – 24x + 3y^2 + 18y + 36 \)
\(= (18y + 36) + (6x2y + 12x^2) – (12xy + 24x) + (x^2y - 2xy^2 + 3y^2) \)
\(= 6(y + 2)(x^2 – 2x + 3) + y^2(x^2 – 2x + 3) \)
\(= (x^2 – 2x + 3)(y^2 + 6y +12) = [(x -1)^2 + 2][(y + 3)^2 +3] > 0 \)
Vậy P > 0 với mọi x, y thuộc R.
\(A=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+2047\)
\(=xy\left(x-2\right)\left(y+6\right)+12\left(x^2-2x\right)+3y\left(y+6\right)+2047\)
\(=y\left(y+6\right)\left(x^2-2x\right)+12\left(x^2-2x+3\right)+3y\left(y+6\right)+2011\)
\(=y\left(y+6\right)\left(x^2-2x+3\right)+12\left(x^2-2x+3\right)+2011\)
\(=\left(x^2-2x+3\right)\left(y^2+6y+12\right)+2011\)
\(=\left[\left(x-1\right)^2+2\right].\left[\left(y+3\right)^2+3\right]+2011\ge2.3+2011=2017\)
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)
Vậy GTNN của A là 2017 khi \(x=1,y=-3\)
2. Có hai cách nhé
Cách 1: P = xy(x - 2)(y + 6) + 12x² - 24x + 3y² + 18y + 36
--> P = xy(x - 2)(y + 6) + 12x(x - 2) + 3y(y + 6) + 36
--> P = [ 12x(x - 2) + 36 ] + xy(x - 2)(y + 6) + 3y(y + 6)
--> P = 12[x(x - 2) + 3] + y(y + 6).[x(x - 2) + 3]
--> P = [x(x - 2) + 3].[y(y + 6) + 12]
--> P = (x² - 2x + 3)(y² + 6y + 12)
--> P = [(x - 1)² + 2].[(y + 3)² + 3] ≥ 2.3 = 6 > 0
Dấu " = " xảy ra ⇔ x = 1 ; y = -3
Vậy MinP = 6 ⇔ x = 1 ; y = -3
Cách 2: P = xy(x - 2)(y + 6) + 12x² - 24x + 3y² + 18y + 36
--> P = xy(x - 2)(y + 6) + 12x(x - 2) + 3(y + 3)² + 9
--> P = x(x - 2)[y(y - 6) + 12] + 3(y + 3)² +9
--> P = x(x - 2)[(y + 3)² + 3] + 3(y + 3)² + 9
--> P = x(x - 2)(y + 3)² + 3x(x - 2) + 3(y + 3)² + 9
--> P = (y + 3)²[x(x - 2) + 3] + 3x(x - 2) + 9
--> P = (y + 3)²[(x - 1)² + 2] + 3x² - 6x + 9
--> P = (y + 3)²(x - 1)² + 2(y + 3)² + 3(x - 1)² + 6 ≥ 6
Dấu " = " xảy ra ⇔ x = 1 ; y = -3
Vậy MinP = 6 ⇔ x = 1 ; y = -3
P/S: MinP = 6 > 0 ∀ x, y ∈ R --> P luôn dương ∀ x, y ∈ R
Mình nghĩ phần CM: "P luôn dương với mọi x,y thuộc R." là hơi thừa :-)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Ta có : \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\) (*)
\(\Leftrightarrow\frac{x^2}{y^2}+2.\frac{x}{y}.\frac{y}{x}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\) (**)
Đặt \(\frac{x}{y}+\frac{y}{x}=t\Rightarrow t\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
Vậy thì \(\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2=t^2-3t+2=\left(t-\frac{3}{2}\right)^2-\frac{1}{4}\)
\(\ge\left(2-\frac{3}{2}\right)^2-\frac{1}{4}=0\)
Vậy bất đẳng thức (**) đúng hay bất đẳng thức (*) đúng
\(xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+2045.\)
\(=\left(x^2-2x\right)\left(y^2+6y\right)+12\left(x^2-2x\right)+3\left(y^2+6y\right)+2045\)
\(=\left[\left(x^2-2x\right)\left(y^2+6y\right)+3\left(y^2+6y\right)\right]+12\left(x^2-2x+3\right)+2009.\)
\(=\left(x^2-2x+3\right)\left(y^2+6x\right)+12\left(x^2-2x+3\right)+2009\)
\(=\left(x^2-2x+3\right)\left(y^2+6x+12\right)+2009\)
\(=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]+2009\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\Leftrightarrow\left(x-1\right)^2+2\ge2\)
\(\left(y+3\right)^2\ge0\forall y\Leftrightarrow\left(y+3\right)^2+3\ge3\)
Suy ra \(B=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]+2009\ge2.3+2009=2015\)
Vậy GTNN của B=2015 khi x=1, y=-3.
\(P=\left(x^2-2x\right)\left(y^2+6y\right)+12\left(x^2-2x\right)+3\left(y^2+6y\right)+36\)
\(=\left(x^2-2x\right)\left(y^2+6y+12\right)+3\left(y^2+6y+12\right)\)
\(=\left(x^2-2x+3\right)\left(y^2+6y+12\right)\)
\(=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]>0\)
\(P=xy\left(x-2\right)\left(x+6\right)+12x^2-24x+3y^2+18y+36\)
\(=xy\left(x-2\right)\left(x+6\right)+12x\left(x-2\right)+3y\left(y+6\right)+36\)
Đặt \(\left\{{}\begin{matrix}x-2=a\\x+6=b\end{matrix}\right.\) . Khi đó
\(P=xy.a.b+12x.a+3y.b+36\)
Phân tích tiếp ....