Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt p=2k hoặc p=2k+1
Nếu p=2k+1 thì 8p-1=16k+1-1=16k ko phải là số nguyên tố ( loại)
Vậy p chỉ có thể bằng 2k
=> 8p+1=16k+1+1=16k+2=8(2k+1) là hợp số
Vậy ...
tick nha
a) vì p là số nguyên tố lớn hơn 3. => khi chia p cho 3 ta có 2 dạng: p=3k+1 hoặc p=3k+2 (kϵ N*)
Nếu p=3k+2 => p+4 =3k+2+4=3k+6 chia hết cho 3 và lớn hơn 3.
=> p+4 là hợp số( trái với đề, loại)
vậy p=3k+1.
=> p+8 = 3k+1+8=3k+9 chia hết cho 3 và lớn hơn 3.
=> p+8 là hợp số.
Kết luận: p+8 là hợp số.(đpcm)
b) hình như còn thiếu cái điều kiện gí ý!? làm mình mệt mỏi quá.
Nhận xét: 8p - 1, 8p, 8p + 1 là 3 số nguyên liên tiếp nên tích (8p - 1)8p.(8p +1) chia hết cho 3
hơn nữa, vì 8 không chia hết cho 3 và p, 8p + 1 là các số nguyên tố nên 8p và 8p - 1 không chia hết cho 3
suy ra 8p + 1 chia hết cho 3. Vậy 8p + 1 là hợp số.
Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa
* Xét: p # 3
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3
Vậy:
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3
=> 8p+1 là hợp số
----------
Cách khác:
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1)
xét 3 số nguyên liên tiếp: p-1, p, p+1
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên)
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3
Xét 3 số tự nhiên liên tiếp 8p-1; 8p; 8p+1
Do tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3 nên ta có:
(8p-1).8p. (8p+1) chia hết cho 3 mà 8p và 8p-1 không thể chia hết cho 3 nên 8p+1 phải chia hết cho 3\(\Rightarrow\)8p+1 là hợp số.
Vậy 8p+1 là hợp số.
Xét 3 số tự nhiên liên tiếp 8p-1 ; 8p ; 8p +1
Do tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3 nên ta có:
(8p-1).8p.(8p+1) chia hết cho 3.
Mà 8p-1 và 8p không thể chia hết cho 3 \(\Rightarrow\)8p+1 chia hết cho 3 \(\Rightarrow\)8p+1 là hợp số.
Vậy 8p+1 là hợp số.
Với p=3 =>p-1=23 (thỏa mãn)
8p+1=25(loại)
Với p khác 3 =>p không chia hết cho 3 =>8p không chia hết cho 3
mà (8p-1)p(8p+1)là tích của 3 số tự nhiên liên tiếp
Theo đề bài :8p-1 >3 (p thuộc N) =>8p-1 không chia hết cho 3
=> 8p+1 chia hết cho 3
mà 8p+1>3
=>8p+1 là hợp số (ĐPCM)
xét p dưới dạng : 3k (khi đó p=3), 3k + 1, 3k+2(k thuộc N).
dạng thứ 3 không thỏa mãn đề bài, (vì khi đó 8p-1 là hợp số), hai dạng trên đều cho 8p+1 là hợp số
TICK MIK NHÉ