Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/question/1076928.html
bạn tham khảo nhé
Đặt a : 6 = x => a = 6x
b : 6 = y => b = 6y
c : 6 = z => c = 6z
Ta có : a3 + b3 + c3 = (a . a . a) + (b . b . b) + (c . c . c)
= ( 6x . 6x . 6x ) + ( 6y . 6y . 6y ) + ( 6z . 6z . 6z )
= 6 ( x . x . x ) + 6 ( y . y . y ) + 6 ( z . z . z ) chia hết cho 6
Ta thấy x;x+1 là 2 số nguyên liên tiếp nên có 1 số chia hết cho 2 => p chia hết cho 2 (1)
+Nếu x=3k(k thuộc N ) thì x chia hết cho 3 => p chia hết cho 3
+Nếu x=3k+1(k thuộc N) thì 2x+1 = 2.(3k+1)+1 = 6k+3 = 3.(2k+2) chia hết cho 3 => p chia hết cho 3
+Nếu x= 3k+2 (k thuộc N ) thì x+1 = 3k+2+1 = 3k+3 = 3.(k+1) chia hết cho 3 => p chia hết cho 3
Vậy p chia hết cho 3 (2)
Từ (1) và (2) => p chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
Vì p là số nguyen tố lớn hơn 3 nên p là số lẻ không chia hết cho 3\(\Rightarrow\)
p không chia hết cho 3 thì p^2 chia 3 dư 1 nên p^2-1 chia hết cho 3 (1)
Lại có p^2-1=(p-1)(p+1) vì p là số lẻ nên p-1 và p+1 là 2 số chẵn liên tiếp nên (p-1)(p+1) chia hết cho 8(2)
Từ (1) và (2) suy ra p^2-1 chia hết cho 3.8=24(vì 8 và 3 nguyên tố cùng nhau)