K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

p và 10p+1 nguyên tố và p>3 => p=3k+1 vì nếu 3k+2 => 10p+1 không nto do chia hết cho 3

với p=3k+1

=> 17p+1=17.3+17+1=17.3+18 chia hết cho 3=> dpcm

2 tháng 2 2017

thank you

30 tháng 10 2015

Do P là số nguyên tố >3

=>Pcó dạng 3k+1 hoặc 3k+2 (với k thuộc N khác 0)

-Nếu P=3k+1 thì:

5P+1=5(3k+1)+1

        =15k+5+1

        =15k+6 chia hết cho 3-> 5P+1 là hợp số(Không thỏa mãn)

-Nếu P=3k+2:

Xét 10P+1 ta có:

10(3k+2)+1=30k+20+1

                 =30k+21 chia ết cho 3 -> 10P+1 là hợp số(Thỏa mãn)

Vậy.......................................................

15 tháng 8 2017

Vì p là số nguyên tố lớn hơn 3 nên p sẽ có một trong các dạng : \(3k+1;3k+2\)           \(\left(k\in N\right)\)

Nếu \(p=3k+1\)thì khi đó \(17p+1=17.\left(3k+1\right)+1=51k+17+1=51k+18=3.\left(17k+6\right)⋮3\)

Suy ra \(17p+1⋮3\)hay \(17p+1\)là hợp số

Nếu \(p=3k+2\)thì khi đó 

\(10p+1=10.\left(3k+2\right)+1=30k+20+1=30k+21=3.\left(10k+7\right)⋮3\)

Suy ra  \(10p+1⋮3\)hay \(10p+1\)là hợp số ( loại vì theo đề bài \(10p+1\)là số nguyên tố )

Vậy \(17p+1\)là hợp số

9 tháng 8 2017

Ta có :

p có dạng 3k , 3k+1 , 3k+2

* Nếu p = 3k+1 => p+1 = 10 ( 3k + 1 ) + 1 = 30k+10+1= 30k+11 ( Thoả mãn )

*Nếu p = 3k+2 => p + 1 = 10( 3k + 2 ) + 1 = 30k+20+1 = 30k+21 ( lớn hơn 3 và chia hết cho 3 ) => p+1 là hợp số
=> Không có trường hợp p = 3k+2

Với p= 3k1 +1 => 17p+1 = 17 ( 3k+1 ) + 1 = 51k + 17 + 1 = 51k + 18 ( Lớn hơn 3 và chia hết cho 3 ) => 17p+1 là hợp số

Vậy 17p+1 là hợp số ( đpcm )

15 tháng 8 2017

p là số nguyên tố, p>3 => p không chia hết cho 3, lại có (10;3)=1 => 10p không chia hết cho 3 (1)

10p+1 là số nguyên tố, 10p+1>3 => 10p+1 không chia hết cho 3 (2)

Ta có: 10p(10p+1)(10p+2) là tích 3 số tự nhiên liên tiếp => 10p(10p+1)(10p+2) chia hết cho 3 (3)

Từ (1),(2),(3) => 10p+2 chia hết cho 3 <=> 2(5p+1) chia hết cho 3

Mà (2;3)=1 Nên 5p+1 chia hết cho 3 (*)

p là số nguyên tố, p>3 => p lẻ => 5p lẻ => 5p+1 chẵn => 5p+1 chia hết cho 2 (**)

Ta có: (2;3)=1 (***)

Từ (*),(**),(***) => 5p+1 chia hết cho 6.

AH
Akai Haruma
Giáo viên
13 tháng 3 2021

Lời giải:
Vì $p$ là snt lớn hơn $3$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$ với $k$ tự nhiên.

Nếu $p=3k+1$ thì $10p-1=10(3k+1)-1=30k+9\vdots 9$ và $10p-1>3$ nên không thể là số nguyên tố (trái giả thiết)

Do đó: $p=3k+2$

Khi đó: $5p-1=5(3k+2)-1=15k+9\vdots 3$ và $5p-1>3$ nên $5p-1$ là hợp số (đpcm)

24 tháng 10 2015

Vì p >3 nên p sẽ có 1 trong 2 dạng: 3k+1 hoặc 3k+2 (k thuộc N*)

 + Nếu p=3k+1 thì 10p+1=30k+11 => 5p+1=15k+6 là hợp số.

 + Nếu p=3k+2 thì 10p+1=30k+21 => 5p+1=15k+11 là hợp số.

24 tháng 10 2015

vì p > 3 nên p không là 2 hoặc 3

các số nguyên tố lớn hơn 3 phải là số tự nhiên lẻ

=> 5p là số lẻ

Vậy 5p + 1 là số chẵn ( hợp số )

6 tháng 9 2016

Điều kiện: n > 3

Xét 3 số tự nhiên liên tiếp: n^2 - 1; n^2; n^2 + 1, trong 3 số này có 1 số chia hết cho 3

Do n nguyên tố > 3 => n không chia hết cho 3 => n^2 không chia hết cho 3

Mà n^2 - 1 nguyên tố > 3 vì n > 3 => n^2 + 1 chia hết cho 3

Mà n^2 + 1 > 3 => n^2 + 1 là hợp số ( đpcm)