K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2020

Vì p,q là 2 SNT >5

Suy ra p,q là số lẻ

Suy ra p,q chia hết cho 2

Suy ra p^4,q^4 chia hết cho 4

Suy ra p^4+2019q^4 chia hết cho 4 (1)

Mặt khác: Xét 5 TH 5k, 5k+1, 5k+2, 5k+3, 5k+4

Suy ra p^4+2019q^4 chia hết cho 5 (2)

Mà (5;4)=1 (3)

Từ (1), (2) và (3) suy ra đpcm

2 tháng 1 2020

cảm ơn bn nhiều nha nhưng cách này mk làm r mk cần cách khac nhanh hơn

9 tháng 8 2016

khó quá

9 tháng 8 2016

Hiếu cũng đi hỏi à?

9 tháng 7 2019

1) 

+) a, b, c là các số nguyên tố lớn hơn 3

=> a, b, c sẽ có dạng 3k+1  hoặc 3k+2

=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 3

=> (a-b)(b-c)(c-a) chia hết cho 3 (1)

+) a,b,c là các số nguyên tố lớn hơn 3 

=> a, b, c là các số lẻ và không chia hết cho 4

=> a,b, c sẽ có dang: 4k+1; 4k+3

=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 4

th1: Cả 3 số chia hết cho 4

=> (a-b)(b-c)(c-a) chia hết cho 64   (2)

Từ (1); (2) => (a-b)(b-c)(c-a) chia hết cho 64.3=192  vì (64;3)=1

=> (a-b)(b-c)(c-a) chia hết cho 48

th2: Có 2 số chia hết cho 4, Số còn lại chia hết cho 2

=> (a-b)(b-c)(c-a) chia hết cho 32  (3)

Từ (1) , (3) 

=> (a-b)(b-c)(c-a) chia hết cho 32.3=96  ( vì (3;32)=1)

=>  (a-b)(b-c)(c-a) chia hết cho 48

Th3: chỉ có một số chia hết cho 4, hai số còn lại chia hết cho 2

=>  (a-b)(b-c)(c-a) chia hết cho 16

Vì (16; 3)=1

=>  (a-b)(b-c)(c-a) chia hết cho 16.3=48

Như vậy với a,b,c là số nguyên tố lớn hơn 3

thì  (a-b)(b-c)(c-a) chia hết cho 48

16 tháng 6 2015

BÀi 4 :VÌ p và 5 là 2 số nguyên tố cùng nhau nên p không chia hết cho 5 

Ta có P8n+3P4n-4 = p4n(p4n+3) -4 

Vì 1 số không chia hết cho 5 khi nâng lên lũy thừa 4n sẽ có số dư khi chia cho 5 là 1 

( cách chứng minh là đồng dư hay tìm chữ số tận cùng )

suy ra : P4n(P4n+3) -4 đồng dư với 1\(\times\)(1+3) -4 = 0 ( mod3) hay A chia hết cho 5

Bài 5

Ta xét :

Nếu p =3 thì dễ thấy 4P+1=9 là hợp số (1)

Nếu p\(\ne\)3 ; vì 2p+1 là số nguyên tố nên p không thể chia 3 dư 1 ( vì nếu p chia 3 duw1 thì 2p+1 chia hết cho 3 và 2p+1 lớn hơn 3 nên sẽ là hợp số trái với đề bài)

suy ra p có dạng 3k+2 ; 4p+1=4(3k+2)+1=12k+9 chia hết cho 3 và 4p+1 lớn hơn 3 nên là 1 hợp số (2)

Từ (1) và (2) suy ra 4p+1 là hợp số 

13 tháng 10 2021

Ta có:

p20 - 1=(p- 1)(p16 + p12 + p+ p4 + 1)
do p là số nguyên tố lớn hơn 5⇒ p là 1 số lẻ
p2 + 1 và p2 - 1 là các số chẵn
p4 - 1 ⋮4
p20 - 1 ⇒4
vì p là số nguyên tố lớn hơn 5⇒ p là số không chia hết cho 5
p4 - 1 ⋮5
lập luận được p16 + p12 + P8 + p4 + 1 ⋮5
⇒ p20 - 1 chia hết cho 25
mà (4;25) = 1
\(p^{20}\) - 1 chia hết cho 100

18 tháng 10 2021

^ là mũ
ta có P^20-1=(P^4-1)(P^16+P^12+P^8+P^4+1)
do P là số nguyên tố lớn hơn 5 suy ra P là 1 số lẻ
P^2+1vaP^2-1 la cạc số chẵn
P^4-1 chia het cho 4
P^20-1 chia hết cho 4
vi p la so nguyen to lon hon 5 suy ra pla so ko chia het cho5
P^4-1 chia het cho 5
lập luận dược p^16+p^12+P^8+p^4+1chia hết cho 5
suy ra p^20-1 chia het cho 25
ma (4;25)=1
suy ra P^20-1 chia het cho 100

26 tháng 7 2018

Ta có với mọi số nguyên m thì m2 chia cho 5 dư 0 , 1 hoặc 4.

+ Nếu n2 chia cho 5 dư 1 thì   n 2 = 5 k + 1 = > n 2 + 4 = 5 k + 5 ⋮ 5 ; k ∈ N * .

Nên n2+4 không là số nguyên tố

+ Nếu n2 chia cho 5 dư 4 thì  n 2 = 5 k + 4 = > n 2 + 16 = 5 k + 20 ⋮ 5 ; k ∈ N * .

Nên n2+16 không là số nguyên tố.

Vậy n2  5 hay n  ⋮ 5