Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3-3xy=p-1\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-3xy+1=p\)
\(\Leftrightarrow\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1-3xy\right]=p\)
\(\Leftrightarrow\hept{\begin{cases}x+y+1=p\\\left(x+y\right)^2-\left(x+y\right)+1-3xy=1\end{cases}}\)( để ý rằng x+y+1 > 1 và p là số nguyên tố )
\(\Leftrightarrow\hept{\begin{cases}x+y+1=p\\\left(x+y\right)^2-\left(x+y\right)=3xy\end{cases}}\)
Mà ta có đánh giá quen thuộc sau:
\(4xy\le\left(x+y\right)^2\Rightarrow3xy=\left(x+y\right)^2-\left(x+y\right)\le\frac{3}{4}\left(x+y\right)^2\)
\(\Leftrightarrow\left(x+y\right)^2-4\left(x+y\right)\le0\Rightarrow0\le x+y\le4\)
Mặt khác \(x+y=p-1\Rightarrow p-1\le4\Leftrightarrow p\le5\)
Vậy pmax=5 tại x=y=2
Theo đề: \(p=x^3+y^3-3xy+1=\left(x+y\right)^3+1-3xy\left(x+y\right)-3xy\)
\(=\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1\right]-3xy\left(x+y+1\right)\)
\(=\left(x+y+1\right)\left(x^2+y^2-x-y-xy+1\right)\)
Vậy \(\left(x+y+1\right)\)và \(\left(x^2+y^2-x-y-xy+1\right)\)là các ước của p, mà p là số nguyên tố nên 1 trong 2 ước trên phải bằng 1 và ước còn lại bằng chính p
+) \(\hept{\begin{cases}x+y+1=1\Leftrightarrow x=-y\\x^2+y^2-x-y-xy+1=p\end{cases}}\)---> Loại, vì x,y nguyên dương nên x không thể bằng -y.
+) \(\hept{\begin{cases}x+y+1=p\Leftrightarrow x+y=p-1\\x^2+y^2-x-y-xy+1=1\end{cases}}\)---> Xét vế dưới:
\(x^2+y^2-x-y-xy=0\)---> Áp dụng 1 số BĐT đơn giản:
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)và \(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow-xy\ge-\frac{\left(x+y\right)^2}{4}\)
Suy ra: \(x^2+y^2-x-y-xy\ge\frac{\left(x+y\right)^2}{2}-\left(x+y\right)-\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^2}{4}-\left(x+y\right)\)
\(\Rightarrow0\ge\frac{\left(x+y\right)^2}{4}-\left(x+y\right)\Leftrightarrow0\le x+y\le4\Rightarrow0\le p-1\le4\Leftrightarrow1\le p\le5\)
Vậy số nguyên tố p lớn nhất thỏa mãn đề bài là p = 5
Khi đó x = y = 2.
Nếu x = 1 => y = 1 thỏa
Nếu x ≥ 2 thì đặt (x³ + x):(3xy - 1) = m ∈ N (vì x, y nguyên dương nên 3xy - 1 nguyên dương)
=> x³ + x = m(3xy - 1) => x² + 1 = 3my - m/x (1) => m/x = 3my - x² - 1 = p ∈ N => m = px thay vào (1) có:
x² + 1 = 3pxy - p (2) => x + 1/x = 3py - p/x => (p + 1)/x = 3py - x = q ∈ N
=> p + 1 = qx => p = qx - 1 thay vào (2) có:
x² + 1 = 3(qx - 1)xy - (qx - 1) = 3qx²y - 3xy - qx + 1
=> x + q = 3y(qx - 1) ≥ 3(qx - 1) ( vì y ≥ 1)
=> 3qx - x - q ≤ 3 <=> (3q - 1)(x - 1) ≤ 4 - 2q ≤ 2 (vì q ≥ 1)
Mà 3q - 1 ≥ 2 và x - 1 ≥ 1 => 3q - 1 = 2 và x - 1 = 1 => x = 2
thay x = 2 vào biểu thức ban đầu có 10/(6y - 1) ∈ N => y = 1
Đs: (x; y) = (1; 1); (2; 1)
+, Nếu x,y đều khác 3
=> x và y đều ko chia hết cho 3
=> x^2 và y^2 đều chia 3 dư 1
=> x^2+y^2 chia 3 dư 2
Mà 3xy chia hết cho 3
=> x^2+3xy+y^2 chia 3 dư 2
=> x^2+3xy+y^2 ko phải số chính phương
=> trong 2 số x,y phải có ít nhất 1 số chia hết cho 3
Gia sử x chia hết cho 3
=> x=3
=> A = x^2+3xy+y^2 = 9+9y+y^2 = y^2+9y+9
Đặt A = k^2 ( k thuộc N )
<=> y^2+9y+9 = k^2
<=> 4y^2+36y+36 = (2k)2
<=> (2y+9)^2 - 45 = (2k)^2
<=> (2y+9)-(2k)^2 = 45
<=> (2y-2k+9).(2y+2k+9) = 45
Đến đó bạn tự làm nha nhưng nhớ kết quả gồm những hoán vị mà bạn tìm đc vì lúc đầu đã giả sử x chia hết cho 3
Tk mk nha
a) \(2xy^2+x+y+1=x^2+2y^2+xy\)
\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)
\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)
\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)
\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)
Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)
Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)
Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)
Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).
Không hiểu sao cái dòng đó lại nhảy như thế. Mình đánh lại.
Giả thiết tương đương với:
\((x+y+1)(x^2+y^2+1-xy-x-y)=p\).
Do x + y + 1 > 1 và p là số nguyên tố nên x + y + 1 = p và \(x^2+y^2+1-x-y-xy=1\Leftrightarrow\left(x+y\right)^2-\left(x+y\right)=3xy\le\dfrac{3}{4}\left(x+y\right)^2\Rightarrow x+y\le4\Rightarrow p\le5\).
Ta thấy 5 là số nguyên tố. Đẳng thức xảy ra khi x = y = 2.
Vậy max p = 5 khi x = y = 2.