Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì p là số nguyên tố lớn hơn 3. => p có 2 dạng: p=3k+1 hoặc p=3k+2 ( k \(\in\)N*)
+) nếu p=3k+2 => 10p+1 = 10.(3k+2)+1
= 30k+20+1
=30k+21 \(⋮\) 3 và lớn hơn 3.
=> 10p+1 là hợp số ( trái với đề, loại )
do đó: p=3k+1
- nếu p=3k+1 => 17p+1 = 17.(3k+1)+1
=51k+17 +1
=51k+18 \(⋮\) 3 và lớn hơn 3.
=>17p+1 là hợp số.
vậy 17p+1 là hợp số. ( điều phải chứng minh )
chúc bạn học giỏi, k mình nha.
p là số nguyên tố lớn hơn 3 => p=3k+1 hoặc p=3k+2
Nếu p=3k+1 => 2p+1=2(3k+1)+1=6k+2+1=6k+3 là hợp số (loại)
=>p=3k+2
=>4p+1=4(3k+2)+1=12k+8+1=12k+9 là hợp số (đpcm)
Vì p là số nguyên tố lớn hơn 3 nên p sẽ có 2 dạng đó là: 3k + 1 và 3k + 2.
Ta chia làm 2 trường hợp:
- TH1: p = 3k + 1
=> 2p + 1 = 2.(3k + 1) + 1 = 6k + 2 + 1 = 6k + 3 = 3.(2k + 1) là hợp số.
=> TH này bị loại vì theo đề bài 2p + 1 phải là số nguyên tố.
- TH2: p = 3k + 2
=> 2p + 1 = 2.(3k + 2) + 1 = 6k + 4 + 5 = 6k + 5 là số nguyên tố.
=> TH này được chọn vì đúng theo yêu cầu của đề bài.
=> 4p + 1 = 4.(3k + 2) + 1 = 12k + 8 + 1 = 12k + 9 = 3.(4k + 3) là hợp số.
Vậy 4p + 1 là hợp số (ĐPCM).
Vì p là số nguyên tố lớn hơn 3 nên p sẽ có 2 dạng đó là: 3k + 1 và 3k + 2.
Ta chia làm 2 trường hợp:
- TH1: p = 3k + 1
=> 2p + 1 = 2.(3k + 1) + 1 = 6k + 2 + 1 = 6k + 3 = 3.(2k + 1) là hợp số.
=> TH này bị loại vì theo đề bài 2p + 1 phải là số nguyên tố.
- TH2: p = 3k + 2
=> 2p + 1 = 2.(3k + 2) + 1 = 6k + 4 + 5 = 6k + 5 là số nguyên tố.
=> TH này được chọn vì đúng theo yêu cầu của đề bài.
=> 4p + 1 = 4.(3k + 2) + 1 = 12k + 8 + 1 = 12k + 9 = 3.(4k + 3) là hợp số.
Vậy 4p + 1 là hợp số (ĐPCM).
+) Với p=3k+1
Ta có : 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số)
=>\(p\ne3k+1\)
+) Với p=3k+2
Ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5
Vì \(p\ne3k+1\) nên ta chộn trường hợp này
=> 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9=3(4k+3) (chia hết cho 3)
Vậy 4p+1 là hợp số
=>đpcm
Vì 9 là SNT ( số nguyên tố ) lớn 3
=> p khi chia cho 3 có 2 dạng:
p = 3k + 1 hoặc p = 3k + 2 ( k thộc N* )
+) với: p = 3k + 1 => 2p + 1 = 2 . ( 3k + 1 ) + 1
= 6k + 2 + 1 = 6k + 3 chia hết cho 3 và lớn hơn 3
=> 2p + 1 là hợp số ( loại )
Vậy: p = 3k + 2
=> 4p + 1 = 4 . ( 3k + 2 ) + 1
= 12k + 8 + 1 = 12k + 9 chia hết cho 3 và lớn hơn 3
=> 4p + 1 là hợp số ( điều phải chứng minh )
Kết luận:
p nguyên tố > 3
=> p chia 3 dư 1,2
=> 2p + 1 chia 3 dư 0, 2
Mà 2p+1 nguên tố <=> 2p+1 chia 3 dư 2 <=> p chia 3 dư 2
=> 4p+1 = 4(3k+2) + 1 = 12k + 8 + 1 = 12k + 9 chia hết cho 3
=> 4p+1 là hợp số
Vì p là số nguyên tố lớn hơn 3 => p = 3k + 1 hoặc 3k + 2 ( k thuộc N* )
+ Nếu p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 => 3k + 3 là hợp số ( Loại )
+ Nếu p = 3k + 2 => p + 2 = 3k + 2 + 2 = 3k + 4 là số nguyên tố
=> p + 1 = 3k + 2 + 1 = 3k + 3 => 2( 3k + 3 ) = 6k + 6 chia hết cho 6
mk nha mk cx hk chắc mk đúng mk ms lớp 6 thôi
Vì 20p+1 là 1 số nguyên tố
=) 20p+1 không chia hết cho 3
=) 20p+1 : 3 dư 1 và dư 2
*Với 20p+1 : 3 dư 1 thì =) 20p+1+2 \(⋮3\)
*Với 20p+1 : 3 dư 2 thì =) 20p+1+1\(⋮3\)=) 20p+2\(⋮3\)=) 2.(10p+1)\(⋮3\)
(=) 10p+1\(⋮3\)( Vì 2 không chia hết cho 3 )
Vậy 10p+1 là hợp số (Đpcm)
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 (k thuộc N).
* Với p=3k+1, ta có:
20p+1=20.(3k+1)+1=60k+20+1=60k+21 chia hết cho 3 => là hợp số=> loại
*Với p=3k+2, ta có:
20p+1=20.(3k+2)+1=60k+40+1=60k+41(là số nguyên tố)
10p+1=10.(3k+2)+1=30k+20+1=30k+21 chia hết cho 3 => là hợp số
Vậy với p là số nguyên tố lớn hơn 3 và 20p+1 cũng là số nguyên tố thì 10p+1 là hợp số.