K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2014

A , p là ; snt lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI

xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)

vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số

do đó 4p + 1 là hợp số ( đpcm)

B ,  nếu p = 3k+1 thì 8p+1 = 8(3k+1)+1 = 24k + 8 +1 =24k+9 (chia hết cho 3 nên là hợp số) LOẠI

nếu  p = 3k + 2 thì 8p + 1 =8(3k+2) +1 =24k + 16 +1 =24k+17(là snt theo đề bài ) ta chọn t/ hợp này

vậy 4p +1 sẽ bằng 4(3k+2)+1 = 12k + 8 +1 =12k+9 (luân chia hết cho 3) nên là hợp số

chứng tỏ 4p+1 là hợp số (đpcm)

16 tháng 4 2016

Vì a và p là số nguyên tố lớn hơn 3 nên p sẽ có dạng : 3k+1

Nếu p= 3k+1 ta có 2p+1= 2(3k+1)+1= 6k+2+1=6k+2 là hợp số   (LOẠI)

VẬY ......................

p là số nguyên tố lớn hơn 3 nên chắc chắn p ko chia hết cho 3

=>2p ko chia hết cho 3

mà 2p+1 nguyên tố

nên 2p+2 chia hết cho 3

=>2(2p+2) chia hết cho 3

=>4p+4 chia hết cho 3

=>4p+1 chia hết cho 3

=>4p+1 là hợp số(đpcm)

AH
Akai Haruma
Giáo viên
8 tháng 1 2022

Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$

Nếu $p=3k+1$ thì: $2p+1=2(3k+1)+1=3(2k+1)\vdots 3$
Mà $2p+1>3$ nên $2p+1$ không là số nguyên tố (trái giả thiết)

Do đó $p=3k+2$. Khi đó:
$4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ với mọi $p>3$ nên $4p+1$ là hợp số.

Ta có đpcm.

 p và 2p+1 nguyên tố 

* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố 

* xét p # 3 

=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3 

=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3) 

=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3 

kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3

# là chia hết nhé!

 k cho mình nhé

4 tháng 6 2021

Theo đề ra: p là số nguyên tố lớn hơn 3 => p không chia hết cho 3

=> p = 3k + 1 hoặc p = 3k + 2

* Với p = 3k + 1 thì:

2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 = 3 . ( 2k + 1 )

=> 2p + 1 chia hết cho 3

Ta có: 2p + 1 > 3

=> 2p + 1 là hợp số ( loại )

* Với p = 3k + 2 thì:

4p + 1 = 4 . ( 3k + 2 ) + 1 = 12k + 8 + 1 = 12k + 9 = 3 . ( 4k + 3 )

=> 4p + 1 chia hết cho 3

Ta có: 4p + 1 > 3

=> 4p + 1 là hợp số

Vậy ...

17 tháng 12 2017

Ta có: 3k+1;3k+2

TH1:Nếu p=3k+1 thì 2p+1=2(3k+1)+1=6k+2+1=6k+3 là hợp số

TH2: Nếu p=3k+2 thì 2p+1=2(3k+1)+1=6k+4+1=6k+5 là số nguyên tố

Mà 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9

 => 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số 

Nên 4p+1 là hợp số

<=> đcpm

19 tháng 6 2018

vì p là snt >3 suy ra p chỉ có hai dạng 3k+1 và 3k+2

th1 : nếu p =3k+1 thì 2p+1=2(3k+1)+1=6k+3(Vì 6k+3>3, và 6k+3 chia hết cho 3 nên 2k+1 là hợp số)

th2 : nếu p =3k+2 thì 4p+1=4(3k+2)+1=12k+9 ( ..........tự chứng minh.....

Vạy nếu p là..........................

19 tháng 6 2018

nobita hoc ngu bay dat lam

\