Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
nếu p chia 6 dư 0 thì p=6k;p là hợp số
nếu p chia 6 dư 1 thì p=6k+1
nếu p chia 6 dư 2 thì p=6k+2,p là hợp số
nếu p chia 6 dư 3 thì p=6k+3,p là hợp số
nếu p chia 6 dư 4 thì p=6k+4,p là hợp số
nếu p chia 6 dư 5 thì p=6k+5
vậy mọi số nguyên t61 >3 chia 6 thì dư 1;dư 5 tức p=6k+1 và p=6k+5
Mình biết làm câu a nhưng không chắc chắn lắm đâu : Mình xét các trường hợp số dư từ 1 đến 5
p:6 dư 1=>p=6k+1 (thỏa mãn)
p:6 dư 2=>p=6k+2 mà 6k+2 chia hết cho 2(loại)
p:6 dư 3=>p=6k+3
=>p chia hết cho 3
=>p=6k+3 (loại)
p:6 dư 4=>p=6k+4
=>p chia hết cho 2
=>p=6k+4 (loại)
p:6 dư 5=>p=6k+5(thỏa mãn)
Vậy các số nguyên tố lớn hơn 3 luôn có dạng 6k+1 hoặc 6k+5
n là số nguyên tố lớn hơn 3 nên n không chia hết cho 3
\(\Rightarrow n^2\)chia 3 dư 1
\(\Rightarrow n^2+3002⋮3\)
Mà \(n^2+3002>3\)nên \(n^2+3002\)là hợp số
n là số nguyên tố và n > 3
=> n = 3k + 1 hoặc n = 3k + 2
xét n = 3k + 1
=> n^2 + 3002 = (3k + 1)^2 + 3002
= 9k^2 + 6k + 1 + 3002
= 9k^2 + 6k + 3003
= 3(3k^2 + 2k + 1001) chia hết cho 3
=> n^2 + 3002 là hợp số
xét n = 3k + 2
=> n^2 + 3002 = (3k + 2)^2 + 3002
= 9k^2 + 12k + 4 + 3002
= 9k^2 + 12k + 3006
= 3(3k^2 + 4k + 1002) chia hết cho 3
=> n^2 + 3002 là hợp số
vậy_
a) Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) hay n 2 = 3k(3k+1)+3k+1
Rõ ràng n 2 chia cho 3 dư 1
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) hay n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n 2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2 chia cho 3 dư 1 tức là p 2 = 3 k + 1 do đó p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3
Vậy p 2 + 2003 là hợp số
a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k2 + 2k) + 1 => n2 chia cho 3 dư 1
+) n chia cho 3 dư 2 => n = 3k + 2 => n2 = (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k2 + 4k +1) + 1 => n2 chia cho 3 dư 1
Vậy...
b) p là số nguyên tố > 3 => p lẻ => p2 lẻ => p2 + 2003 chẵn => p2 + 2003 là hợp số
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.
Vậy 4p+1 là hợp số,
cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.
Vậy 4p+1 là hợp số,
a)
p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số
b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số
c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số
a )
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
nhé !
.........
còn câu b ,c chưa nghĩ ra
cái đề này sai về Cho P là số...........?
anh_hung_lang_la sướng ghê nói thế đã 1 l ike rùi