K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
12 tháng 9 2021

Vì \(p\)là số nguyên tổ nên tổng các ước nguyên dương của \(p^4\)là \(1+p+p^2+p^3+p^4\).

Đặt \(p^4+p^3+p^2+p+1=n^2\)

\(\Leftrightarrow4p^4+4p^3+4p^2+4p+1=4n^2\)

Ta có: 

\(4p^4+4p^3+4p^2+4p+4>4p^4+4p^3+p^2=\left(2p^2+p\right)^2\)

\(4p^4+4p^3+4p^2+4p+4< 4p^4+4p^3+9p^2+4p+4=\left(2p^2+p+2\right)^2\)

Suy ra \(\left(2p^2+p\right)^2< 4n^2< \left(2p^2+p+2\right)^2\)

\(\Rightarrow\left(2n\right)^2=\left(2p^2+p+1\right)^2=4p^4+4p^3+5p^2+2p+1\)

\(\Rightarrow p^2-2p-3=0\)

\(\Leftrightarrow\left(p+1\right)\left(p-3\right)=0\)

\(\Rightarrow p=3\)thỏa mãn. 

Vậy \(p=3\).

NV
20 tháng 3 2022

Do p là SNT nên \(p^4\) chỉ có các ước nguyên dương là \(1;p;p^2;p^3;p^4\)

\(\Rightarrow1+p+p^2+p^3+p^4=k^2\) với \(k\in N\)

\(\Rightarrow\left(2k\right)^2=4p^4+4p^3+4p^2+4p+4=\left(2p^2+p\right)^2+\left(3p^2+4p+4\right)>\left(2p^2+p\right)^2\)

Đồng thời: \(4p^4+4p^3+4p^2+4p+4=\left(2p^2+p+2\right)^2-5p^2< \left(2p^2+p+2\right)^2\)

\(\Rightarrow\left(2p^2+p\right)^2< \left(2k\right)^2< \left(2p^2+p+2\right)^2\)

\(\Rightarrow\left(2k\right)^2=\left(2p^2+p+1\right)^2\)

\(\Rightarrow4p^4+4p^3+4p^2+4p+4=\left(2p^2+p+1\right)^2\)

\(\Rightarrow p^2-2p-3=0\Rightarrow\left[{}\begin{matrix}p=-1\left(ktm\right)\\p=3\left(tm\right)\end{matrix}\right.\)

20 tháng 3 2022

Em cảm ơn ạ

Số p4 có 5 ước số tự nhiên là 1 , p, p2 , p3 , p4
Ta có : 1 + p + p2 + p3 + p4 = n2     (n \(∈\) N)
Suy ra : 4n= 4p+ 4p+ 4p+ 4p + 4 > 4p+ 4p+ p= (2p+ p)2
Và  4n2 < 4p+ p2 + 4 + 4p+ 8p+ 4p = (2p+ p + 2)2.
Vậy : (2p+ p)< (2n) < (2p+ p + 2)2.
Suy ra :(2n)2 = (2p+ p + 2)2 = 4p+ 4p+5p+ 2p + 1

Vậy 4p + 4p+5p+ 2p + 1 = 4p+ 4p+4p+4p + 4   (vì cùng bằng 4n2 )

=> p- 2p - 3 = 0  

=> (p + 1) (p - 3) = 0

do p > 1  => p - 3 = 0   => p = 3 (tm)

18 tháng 2 2021

Câu hỏi của tran gia nhat tien - Toán lớp 8 - Học trực tuyến OLM

1 tháng 7 2017

Gợi ý:

Tổng các ước dương của p4p4 là : p4+p3+p2+p+1p4+p3+p2+p+1
Theo đề ra thì: p4+p3+p2+p+1=n2(n∈Np4+p3+p2+p+1=n2(n∈N
Để ý rằng: (2p2+p)2<(2n)2<(2p2+p+2)2→2n=2p2+p+1(2p2+p)2<(2n)2<(2p2+p+2)2→2n=2p2+p+1
Đến đây đơn giản rồi nhé !
___
NLT 

   k nha

1 tháng 7 2017

bn k đi mk giải cho

21 tháng 11 2015

1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9

2. 

Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)

 

 

                                                                          

21 tháng 11 2015

chưa hẳn số chính phương bao giờ cũng TC = các chữ số đó đâu

VD: 21 không là số chính phương

81=92 là số chính phương

12 tháng 9 2016

Gọi UCLN của a-c và b-c là d 
mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1
Do đó a-c và b-c là hai số chính phương. Đặt a-c = p2; b-c = q2
( p; q là các số nguyên)
c2 = p2q2c = pq  a+b = (a- c) + (b – c) + 2c = ( p+ q)2 là số chính phương

tích mik nhé

12 tháng 9 2016

Cho các số nguyên dương a;b;c đôi một nguyên tố cùng nhau, thỏa mãn: (a+b)c=ab.

Xét tổng M=a+b có phải là số chính phương không ? Vì sao?
 

\

Gọi UCLN của a-c và b-c là d 
mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1
Do đó a-c và b-c là hai số chính phương. Đặt a-c = p2; b-c = q2
( p; q là các số nguyên)
c2 = p2q2c = pq  a+b = (a- c) + (b – c) + 2c = ( p+ q)2 là số chính phương