K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\cdot\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\cdot\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

b) Để P>0 thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}>0\)

mà \(\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}\left(\sqrt{x}-1\right)>0\)

mà \(\sqrt{x}>0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}-1>0\)

\(\Leftrightarrow\sqrt{x}>1\)

hay x>1

Kết hợp ĐKXĐ,ta được: x>1

Vậy: Để P>0 thì x>1

3 tháng 2 2021

Điều kiện: x>2

P= \(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{2}+2}{\sqrt{x}-1}\right)\)

P= \(\left(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

P= \(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)

P= \(\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

b) P= \(\dfrac{1}{4}\)

\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}\) =\(\dfrac{1}{4}\)

\(4\sqrt{x}-8=3\sqrt{x}\)

\(\sqrt{x}=8\)

⇔x=64 (TM) 

Vậy X=64(TMĐK) thì P=\(\dfrac{1}{4}\)

 

 

NV
23 tháng 12 2022

ĐKXĐ: \(x>0;x\ne9\)

\(P=\left(\dfrac{x+7}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\dfrac{4\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\right)\left(\dfrac{\sqrt{x}+6}{\sqrt{x}}\right)\)

\(=\left(\dfrac{x+7-4\sqrt{x}-4+\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\right)\left(\dfrac{\sqrt{x}+6}{\sqrt{x}}\right)\)

\(=\left(\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\right).\left(\dfrac{\sqrt{x}+6}{\sqrt{x}}\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}.\dfrac{\left(\sqrt{x}+6\right)}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+6}{\sqrt{x}+1}\)

b.

Ta có \(P=\dfrac{\sqrt{x}+1+5}{\sqrt{x}+1}=1+\dfrac{5}{\sqrt{x}+1}\)

Do \(\sqrt{x}+1>0\Rightarrow\dfrac{5}{\sqrt{x}+1}>0\Rightarrow P>1\)

\(P=\dfrac{6\left(\sqrt{x}+1\right)-5\sqrt{x}}{\sqrt{x}+1}=6-\dfrac{5\sqrt{x}}{\sqrt{x}+1}\)

Do \(\left\{{}\begin{matrix}5\sqrt{x}>0\\\sqrt{x}+1>0\end{matrix}\right.\) ;\(\forall x>0\Rightarrow\dfrac{5\sqrt{x}}{\sqrt{x}+1}>0\)

\(\Rightarrow P< 6\Rightarrow1< P< 6\)

Mà P nguyên \(\Rightarrow P=\left\{2;3;4;5\right\}\)

- Để \(P=2\Rightarrow\dfrac{\sqrt{x}+6}{\sqrt{x}+1}=2\Rightarrow\sqrt{x}+6=2\sqrt{x}+2\Rightarrow x=16\)

- Để \(P=3\Rightarrow\dfrac{\sqrt{x}+6}{\sqrt{x}+1}=3\Rightarrow\sqrt{x}+6=3\sqrt{x}+3\Rightarrow\sqrt{x}=\dfrac{3}{2}\Rightarrow x=\dfrac{9}{4}\)

- Để \(P=4\Rightarrow\dfrac{\sqrt{x}+6}{\sqrt{x}+1}=4\Rightarrow\sqrt{x}+6=4\sqrt{x}+4\Rightarrow\sqrt{x}=\dfrac{2}{3}\Rightarrow x=\dfrac{4}{9}\)

- Để \(P=5\Rightarrow\dfrac{\sqrt{x}+6}{\sqrt{x}+1}=5\Rightarrow\sqrt{x}+6=5\sqrt{x}+5\Rightarrow\sqrt{x}=\dfrac{1}{4}\Rightarrow x=\dfrac{1}{16}\)

19 tháng 1 2022

a, x > 0 ; x khác 1 

\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{x-\sqrt{x}}\right):\dfrac{1}{\sqrt{x}-1}\)

\(=\left(\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{1}{\sqrt{x}-1}=\dfrac{x-2}{\sqrt{x}}\)

b, Ta có : \(P=\dfrac{x-2}{\sqrt{x}}=1\Rightarrow x-2=\sqrt{x}\)

\(\Leftrightarrow x-\sqrt{x}-2=0\Leftrightarrow\left(\sqrt{x}+1>0\right)\left(\sqrt{x}-2\right)=0\Leftrightarrow x=4\)(tm) 

a: \(P=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{1}=\dfrac{x-2}{\sqrt{x}}\)

b: Để P=1 thì \(x-\sqrt{x}-2=0\)

hay x=4

a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\cdot\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

b) Để P>0 thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}>0\)

mà \(\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}\left(\sqrt{x}-1\right)>0\)

mà \(\sqrt{x}>0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}-1>0\)

\(\Leftrightarrow\sqrt{x}>1\)

hay x>1

Kết hợp ĐKXĐ, ta được: x>1

Vậy: Để P>0 thì x>1