K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 2 2020

Với \(n=1\Rightarrow P=6\)

\(n=2\Rightarrow P=30\)

Tất cả đều ko phải số chính phương

9 tháng 4 2016

nhanh hk

9 tháng 4 2016

\(1a.\)

Ta có: \(n^4+4=\left(n^2\right)^2+4n^2+4-4n^2=\left(n^2+2\right)^2-\left(2n\right)^2=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)

Vì  \(n^2+2n+2>n^2-2n+2\)  với mọi  \(n\in N\) 

nên để  \(n^4+4\)  là số nguyên tố thì  \(n^2-2n+2=1\)  \(\Leftrightarrow\)  \(\left(n-1\right)^2=0\)  \(\Leftrightarrow\)  \(n-1=0\)  \(\Leftrightarrow\)  \(n=1\)

Vậy, với  \(n=1\)  thì   \(n^4+4\)  là số nguyên tố

Ta có : S = 1.2.3 + 2.3.4 + 3.4.5 + ..... + k(k + 1)(k + 2) 

=> 4S = 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + .... + k(k + 1)(k + 2)(k + 3)

= k(k + 1)(k + 2)(k + 3) 

= (k2 + 3k)(k2 + 3k + 2)

Nên :4S + 1 =   (k2 + 3k)(k2 + 3k + 2) + 1 

Đặt k2 + 3k = t 

Ta có : 4S + 1 = t(t + 2) + 1

= t+ 2t + 1 

= (t + 1)2 

Vì k thuộc N nên : k2 + 3k thuôc N <=> t + 1 = k2 + 3k + 1 thuôc N 

Vậy 4S + 1 là bình phương của 1 số tự nhiên 

9 tháng 4 2018

Ta có : C = |x-2016|+|x-2015|

=>       C = |2016-x|+|x-2015|

Áp dụng công thức : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)(Với a;b \(\in Z\))

\(\Rightarrow C\ge\left|2016-x+x-2015\right|=1\)

Vậy dấu "=" xảy ra khi :

\(\orbr{\begin{cases}x\le2016\\x\ge2015\end{cases}}\Rightarrow x=\hept{\begin{cases}2016\\2015\end{cases}}\)

Vậy với x = 2016 hoặc x = 2015 thì C đạt GTNN = 1

11 tháng 4 2018

Ta có : 

\(S=1.2.3+2.3.4+3.4.5+...+k\left(k+1\right)\left(k+2\right)\)

\(4S=1.2.3.4+2.3.4.4+3.4.5.4+...+k\left(k+1\right)\left(k+2\right).4\)

\(4S=1.2.3.\left(4-0\right)+2.3.4\left(5-1\right)+3.4.5\left(6-2\right)+...+k\left(k+1\right)\left(k+2\right)\left(k+1-k-1\right)\)

\(4S=1.2.3.4-1.2.3.0+2.3.4.5-2.3.4+3.4.5.6-2.3.4.5+...+k\left(k+1\right)\left(k+2\right)\left(k+3\right)-\)

\(\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)

\(4S=\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)

\(\Rightarrow\)\(4S+1=\left(k-1\right)k\left(k+1\right)\left(k+2\right)+1\)

Lại có tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương ( muốn chứng minh thì mình chứng minh luôn ) 

Vậy \(4S+1\) là bình phương của một số tự nhiên 

Chúc bạn học tốt ~ 

11 tháng 4 2018

S=1.2.3+2.3.4+3.4.5+...+k(k+1)(k+2)

=> 4S=1.2.3.4+2.3.4.4+3.4.5.4+...+k(k+1)(k+2).4

<=> 4S=1.2.3.4+2.3.4(5-1)+3.4.5(6-2)+...+k(k+1)(k+2)[(k+3)-(k-1)]

<=> 4S=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+k(k+1)(k+2)(k+3)-(k-1).k(k+1)(k+2)(k+3)

=> 4S=k(k+1)(k+2)(k+3)

=> 4S+1=k(k+1)(k+2)(k+3)+1 = k(k+3)(k+1)(k+2)+1 = (k2+3k)(k2+3k+2)+1

Đặt: n=k2+3k 

=> 4S+1 = n(n+2)+1 = n2+2n+1 = (n+1)2

=> 4S+1 = (k2+3k+1)2

=> (4S+1) là bình phương của 1 số tự nhiên có giá trị là: (k2+3k+1)

Ví dụ: k=5 thì 4S+1=(25+15+1)2=412

11 tháng 11 2017

Cho S = 1.2.3 + 2.3.4 + 3.4.5 + . . . + k(k+1)(k+2)

Chứng minh rằng 4S + 1 là số chính phương .

Ta có k(k+1)(k+2) = 41 k(k+1)(k+2).4

                             = 41 k(k+1)(k+2).[(k+3) – (k-1)]

                            = 41 k(k+1)(k+2)(k+3) - 41 k(k+1)(k+2)(k-1)

⇒S =41.1.2.3.4 -41.0.1.2.3 + 41.2.3.4.5 -41.1.2.3.4 +…+41 k(k+1)(k+2)(k+3) -41 k(k+1)(k+2)(k-1)

= 41 k(k+1)(k+2)(k+3)4S + 1

= k(k+1)(k+2)(k+3) + 1Theo kết quả bài 2

⇒ k(k+1)(k+2)(k+3) + 1 là số chính phương.

 

6 tháng 1 2018

\(N=1.2.3+2.3.4+...+n\left(n+1\right)\left(n+2\right)\)

\(4N=1.2.3.4+2.3.4.4+...+4n\left(n+1\right)\left(n+2\right)\)

\(4N=1.2.3.4+2.3.4.\left(5-1\right)+....+n\left(n+1\right)\left(n+2\right)\left[\left(n+3\right)-\left(n-1\right)\right]\)

\(4N=1.2.3.4+2.3.4.5-1.2.3.4+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

\(4N=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(4N+1=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)

\(=\left(n^2+3n\right)\left(n^2+2n+n+2\right)+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

\(=\left(n^2+3n+1-1\right)\left(n^2+3n+1+1\right)+1\)

\(=\left(n^2+3n+1\right)^2-1+1=\left(n^2+3n+1\right)^2=t^2\)(1 số bất kì thỏa mãn)

Vậy \(4N+1\) là số chính phương (đpcm)

14 tháng 2 2018

Với \(k\in N;k>0\) Ta có :

\(\frac{1}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{2}.\frac{\left(k+2\right)-k}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{2}\left(\frac{1}{k\left(k+1\right)}-\frac{1}{\left(k+1\right)\left(k+2\right)}\right)\)

Áp dụng ta có :

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.....+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{n\left(n+1\right)}\right)=\frac{1}{2}.\frac{n\left(n+1\right)-2}{2n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{4n\left(n+1\right)}\)(đpcm)

14 tháng 2 2018

Ta có : 

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{4n\left(n+1\right)}\)

\(\Leftrightarrow\)\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{\left(n-1\right)n\left(n+1\right)}=\frac{2\left(n-1\right)\left(n+2\right)}{4n\left(n+1\right)}\)

\(\Leftrightarrow\)\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}=\frac{n\left(n-1\right)+2\left(n-1\right)}{2n\left(n+1\right)}\)

\(\Leftrightarrow\)\(\frac{1}{2}-\frac{1}{n\left(n+1\right)}=\frac{n^2-n+2n-2}{2n^2+2n}\)

\(\Leftrightarrow\)\(\frac{n\left(n+1\right)}{2n\left(n+1\right)}-\frac{2}{2n\left(n+1\right)}=\frac{n^2+n-2}{2n^2+2n}\)

\(\Leftrightarrow\)\(\frac{n^2+n-2}{2n^2+2n}=\frac{n^2+n-2}{2n^2+2n}\) với \(n\ge2\)

Vậy ...

28 tháng 1 2016

B=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)

  ={1.2.3.(4-0)+2.3.4(5-1)+3.4.5.(6-2)+...+n(n+1)(n+2)[(n+3)-(n-1)]} : 4

  = [1.2.3.4+2.3.4.5+3.4.5.6+...+n(n+1)(n+2)(n+3) - 1.2.3.4 - 2.3.4.5 - 3.4.5.6 - ... - n(n+1)(n+2)(n-1)] : 4

  =\(\frac{\text{ n(n+1)(n+2)(n+3) }}{4}\)

 

28 tháng 1 2016

B = \(\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

1 tháng 12 2017

\(B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(B=\dfrac{1}{4}-\dfrac{1}{2\left(n+1\right)\left(n+2\right)}\)