Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q = \(\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}\)
Cộng 1 vào mỗi phân số trong 48 phân số đầu, trừ phân số cuối đi 48, ta được :
Q = \(\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(\frac{3}{47}+1\right)+...+\left(\frac{48}{2}+1\right)+1\)
Q = \(\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+1\)
Q = \(\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}\)
đưa phân số cuối lên đầu :
Q = \(\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}\)
Q = \(50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+...+\frac{1}{2}\right)\)
Q = 50 . A
Vậy \(\frac{P}{Q}=\frac{1}{50}\)
(50-1):1+1=50 số
=(50-49)+(48-47)+...+(4-3)+(2-1). Ta có 25 cặp số
=1+1+1+....+1
=1.25
=25
Câu 2:
Ta có \(\dfrac{27}{4}\) \(=\dfrac{-x}{3}\) nên \(x=-\dfrac{27}{4}.3=20,25\)( không thuộc Z )
Vậy không tồn tại các số nguyên x,y,z,t thỏa mãn đề bài.
\(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
\(P=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+1\)
\(P=\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}\)
\(P=50\left(\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)
\(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)}=\dfrac{1}{50}\)
Mik k giải đc
Thông cảm nha
Nhưng mik sắp nghĩ ra rồi.
Hì hì
Hóa ra là vào đây
Nhanh lên mik còn chép!!!!