K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

c> ta có OM.EM=MC.MD vì = AM^2

=> tam giác đồng dạng 

=> góc E= goác ODM  

=> tứ giác OECD nt

=> góc DEO=DCO

mà DCO=ODC và ODC=CEM => .... tự nhìn nốt

13 tháng 4 2016

câu a thì thôi nhá

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

20 tháng 11 2020

a) Tứ giác MAOB có: \(\widehat{OAM}=90^0\left(0A\perp AM\right);\widehat{OBM}=90^0\left(CB\perp BM\right)\)

=> \(\widehat{OAM}+\widehat{OBM}=180^O\)

=> AOBM nội tiếp (tổng 2 góc đối = 180)

Vì I là tâm=> I là trung điểm OM

b) Tính \(MA^2=3R^2\Rightarrow MC.MD=3R^2\)

c) CM: OM là trung trực AB

=> FA=FB

=> tam giác FAB cân tại F

Gọi H là giao điểm AB và OM

Ta có: OA=OB=AI=R => tam giác OAI đều

=> OAI =60O=> FAB=60(cùng phụ AFI)

Vậy tam giác AFB đều

d) Kẻ EK vuông góc với FB tại K. Ta có:

\(S_{B\text{EF}}=\frac{1}{2}.FB.EK\)

Mà \(EK\le BE\)( TAM giác BEK vuông tại K)

Lại có: \(BE\le OA\)(LIÊN hệ đường kính và dây cung)

=> \(S_{B\text{EF}}\le\frac{1}{2}.R\sqrt{3}.2R=R^2\sqrt{3}\)

GTLN của \(S_{B\text{EF}}=R^2\sqrt{3}\). kHI ĐÓ BE là đường kính (I)

Kẻ đường kính BG của (I). Vì B và (I) cố định nên BG cố
 định . Khi đó vị trí cắt tuyến MCD để \(S_{B\text{EF}}\)đạt GTLN là C là giao điểm của FG với đường tron (O)

4 tháng 4 2016

mk ra rùi các cậu ko cần giải nữa đau nhé