K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2021

a) ý bạn chắc là BD cắt đường tròn đk BC tại K nhỉ.chứ ko có điểm K

Vì BC là đường kính \(\Rightarrow\angle CKB=90\)

\(\Rightarrow\angle DHC+\angle DKC=90+90=180\Rightarrow DHCK\) nội tiếp

b) Dễ dàng chứng minh được H là trung điểm DE

\(\Rightarrow\) DE và AC cắt nhau tại trung điểm mỗi đường

\(\Rightarrow ADCE\) là hình bình hành có \(DE\bot AC\Rightarrow ADCE\) là hình thoi

\(\Rightarrow CE\parallel DA\) mà \(DA\bot DB\left(\angle ADB=90\right)\Rightarrow CE\bot DB\)

mà \(CK\bot DB\left(\angle CKB=90\right)\Rightarrow C,E,K\) thẳng hàng 

c) MN cắt DE tại G.Kẻ tiếp tuyến MM' của (O)

Ta có: \(EM^2+DN^2=GM^2+GE^2+GD^2+GN^2\)

\(=\left(GM^2+GD^2\right)+\left(GE^2+GN^2\right)=MD^2+EN^2\left(1\right)\)

Vì MM' là đường kính \(\Rightarrow\angle MNM'=90\Rightarrow M'N\bot MN\)

mà \(MN\bot DE\) \(\Rightarrow M'N\parallel DE\) \(\Rightarrow DNM'E\) là hình thang

mà \(DNM'E\) nội tiếp \(\Rightarrow DNM'E\) là hình thang cân

\(\Rightarrow EN=M'D\left(2\right)\)

Từ (1) và (2) \(\Rightarrow EM^2+DN^2=DM^2+DM'^2=MM'^2=4R^2\)

undefined

 

28 tháng 5 2021

a) Ta có A, E, F, K, H cùng thuộc đường tròn đường kính AH.

b) Ta có \(\widehat{AMN}=90^o-\widehat{OAB}=90^o-\dfrac{180^o-\widehat{AOB}}{2}=\dfrac{\widehat{AOB}}{2}=\widehat{ACB}\).

Suy ra tứ giác BMNC nội tiếp và \(\Delta SMB\sim\Delta SCN\left(g.g\right)\) nên \(SM.SN=SB.SC\).

c) Ta có \(\widehat{QCB}=\widehat{QAB}=\widehat{HCB};\widehat{QBC}=\widehat{HBC}\) nên Q, H đối xứng với nhau qua BC.

Mà S thuộc BC nên SH = SQ.

Ta lại có \(\widehat{SHB}=\widehat{BHF}-\widehat{MHF}=\widehat{BAC}-\left(90^o-\widehat{AMH}\right)=\widehat{BAC}+\widehat{ACB}-90^o=90^o-\widehat{ABC}=\widehat{SCH}\Rightarrow\Delta SHB\sim\Delta SCH\left(g.g\right)\Rightarrow SQ^2=SH^2=SB.SC\).

d) I là điểm nào vậy bạn?

29 tháng 5 2021

I là trđ AH...quên tí:)))

 

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Lời giải:

*** Mình chưa thấy điểm $I$ có vai trò gì trong bài này.

Gọi $D$ là giao điểm $BC, AN$ và $L$ là giao $AN$ với $(O)$

Dễ thấy $\triangle ABN=\triangle MCN$ do:

$AB=MC$ (tính chất cung bị chặn bởi 2 dây song song)

$NB=NC$

$\widehat{ABN}=\frac{1}{2}\text{sđc(AB>)}=\frac{1}{2}\text{sđc(MC>)}=\widehat{MCN}$

Do đó:

$\widehat{BAD}=\widehat{BAN}=\widehat{CMN}=\widehat{CAH}$

$\Rightarrow \widehat{BAH}=\widehat{CAD}$

Ta có:

$\frac{HB}{CH}=\frac{S_{ABH}}{S_{ACH}}=\frac{AB.AH.\sin BAH}{AC.AH.\sin CAH}=\frac{AB.\sin BAH}{AC\sin CAH}$

$=\frac{AB}{AC}.\frac{\sin BAH}{\sin CAH}=\frac{AB}{AC}.\frac{\sin CAD}{\sin BAD}=\frac{AB}{AC}.\frac{\sin CAL}{\sin BAL}=\frac{AB}{AC}.\frac{\sin CBL}{\sin BCL}=\frac{AB}{AC}.\frac{LC}{BL}(*)$

Mà:

Dễ cm $\triangle ABN\sim \triangle BLN, \triangle ACN\sim \triangle CLN$

$\Rightarrow \frac{AB}{BL}=\frac{BN}{LN}=\frac{CN}{LN}=\frac{AC}{CL}$

$\Rightarrow \frac{LC}{BL}=\frac{AC}{AB}(**)$

Từ $(*); (**)\Rightarrow \frac{BH}{HC}=\frac{AB}{AC}.\frac{AC}{AB}=1$

$\Rightarrow BH=HC$ nên $H$ là trung điểm của $BC$

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Hình vẽ:

undefined

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)