Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')
Cho đường tròn tâm O có đường kính AB R2 . Gọi M là điểm di động trên đường tròn O . Điểm M khác AB, ; dựng đường tròn tâm M tiếp xúc với AB tại H . Từ A và B kẻ hai tiếp tuyến AC và BD với đường tròn tâm M vừa dựng.
a) Chứng minh BM AM , lần lượt là các tia phân giác của các góc ABD và BAC .
b) Chứng minh ba điểm C M D , , nằm trên tiếp tuyến của đường tròn tâm O tại điểm M .
c) Chứng minh AC BD không đổi, từ đó tính tích AC BD. theo CD .
d) Giả sử ngoài AB, trên nửa đường tròn đường kính AB không chứa M có một điểm N cố định. gọi I là trung điểm của MN , kẻ IP vuông góc với MB . Khi M chuyển động thì P chuyển động trên đường cố định nào.
Cần giải câu d
b: ΔOCD cân tại O
mà OI là trug tuyến
nên OI vuông góc CD
Xét (O) có
MA,MB là tiêp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại H
góc OIK=goc OHK=90 độ
=>OIKH nội tiếp
=>K nằm trên đường tròn ngoại tiếp ΔOIH
c: Gọi J là giao của OI và AB
ΔOJM đồng dạng với ΔOHI
=>OJ/OH=OM/OI
=>OJ*OI=OM*OH=OA^2=R^2 ko đổi
nên OI ko đổi
mà OI*OK=R^2
nên OK ko đổi
=>M di động trên d khi AB đi qua K cố định
a) Ta có \(IM//AE\)suy ra \(\widehat{MIH}=\widehat{EAH}\). Mà \(\widehat{EAH}=\widehat{ECH}\)nên \(\widehat{MIH}=\widehat{MCH}\). Suy ra tứ giác CIMH nội tiếp.
Dễ dàng chỉ ra được ED là tiếp tuyến của \(\left(O\right)\)suy ra \(\widehat{HED}=\widehat{HCE}\)\(\left(1\right)\)
Do tứ giác CIMH nội tiếp nên \(\widehat{CHM}=90^0\)suy ra \(\widehat{HCM}+\widehat{HMC}=90^0\)
Mà \(\widehat{HMD}+\widehat{HMC}=90^0\)nên \(\widehat{HCM}=\widehat{HMD}\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra \(\widehat{HED}=\widehat{HMD}\)nên tứ giác EMHD nội tiếp. Do đó \(\widehat{HDM}=\widehat{HEM}\)mà \(\widehat{HEM}=\widehat{HCD}\)nên \(\widehat{HDM}=\widehat{HCD}\)
Từ đó chứng minh được BD là tiếp tuyến của \(\left(O_1\right)\)
b) Sử dụng tính chất đường nối tâm vuông góc với dây chung ta có: \(OO_2\perp HE,O_2O_1\perp HD\)và do \(EH\perp HD\)suy ra \(OO_2\perp O_2O_1\)
Dễ thấy \(\widehat{COM}=45^0\)suy ra \(\widehat{CAE}=45^0\)nên \(\widehat{O_2OO_1}=45^0\). \(\Delta O_2OO_1\)vuông cân tại \(O_2\)
Tứ giác OCDE là hình vuông cạnh R và \(O_2\) là trung điểm của DE nên ta tính được \(O_2O^2=\frac{5R^2}{4}\)
.Vậy diện tích \(\Delta O_2OO_1\) là\(\frac{5R^2}{8}\)
a) góc PAB = BPK ( góc nt, góc giữa tt và dây cùng chắn cung BP)
góc APB = 900 (góc nt chắn nửa (O))
mà góc KPM phụ góc BPK ; góc PMK phụ góc PAB => góc KPM = góc PMK => tg KPM cân tại K
b) góc AQB = 900 (góc nt chắn nửa (O))
Trog tg AMN có AC, MQ là hai đường cao cắt nhau tại B => B là trực tâm => NB vuông góc với AM mà BP vuông góc AM
=> P, B, N thẳng hàng
+ Xét tứ giác APCN có góc APN = góc ACN = 900 nên là tứ giác nội tiếp => góc PAB = góc PNC, mà góc PAB = góc BPK (cmt)
=> góc PNC = góc BPK => tg KPN cân tại K => KP = KN, mà KP = KM => KM = KN => K là trung điểm của MN
Trog tg vuông QMN có QK là đường trung tuyến => KQ = 1/2MN = KP
=> tg OPK = tg OQK (c.c.c) => góc OQK = góc OPK = 900. Vậy QK là tiếp tuyến của (O)
a. Ta có:
góc AMB=90o (góc nội tiếp chắn nửa đtròn) hay AMH=90o
góc HCA=90o (gt)
⇒AMB+ACH=180o
⇒Tứ giác AMHC nội tiếp đtròn đkính AH
b) ΔOAM đều (vì OA=AM=MA=R) ⇒góc A=60o
Ta có: BMI=A(=1/2 sđMB) hay HMI=A
MHI=A (tứ giác AMHC nt)
Suy ra: HMI=MHI=A=60o
⇒ΔMIH đều