K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm

CA là tiếp tuyến có A là tiếp điểm

Do đó: OC là tia phân giác của \(\widehat{AOM}\)

Xét (O) có 

DM là tiếp tuyến có M là tiếp điểm

DB là tiếp tuyến có B là tiếp điểm

Do đó: OD là tia phân giác của \(\widehat{BOM}\)

Ta có: \(\widehat{AOM}+\widehat{BOM}=180^0\)

\(\Leftrightarrow2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)

hay \(\widehat{COD}=90^0\)

3 tháng 9 2021

mik đag cần gấp ạ^^

 

a: Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm

CA là tiếp tuyến có A là tiếp điểm

Do đó: CM=CA

Xét (O) có

DM là tiếp tuyến có M là tiếp điểm

DB là tiếp tuyến có B là tiếp điểm

Do đó: DM=DB

Ta có: MC+MD=CD

mà MC=CA

và MD=DB

nên CD=AC+BD

a: Xét tứ giác OBDM có

góc OBD+góc OMD=180 độ

=>OBDM là tư giác nội tiếp

c: Xét ΔKOB và ΔKFE có

góc KOB=góc KFE

góc OKB=góc FKE

=>ΔKOB đồng dạng với ΔKFE
=>KO/KF=KB/KE

=>KO*KE=KB*KF

NV
8 tháng 5 2023

C là giao điểm 2 tiếp tuyến tại A và M \(\Rightarrow OC\) là trung trực AM

\(\Rightarrow E\) là trung điểm AM

Tương tự ta có OD là trung trực BM \(\Rightarrow F\) là trung điểm BM

\(\Rightarrow EF\) là đường trung bình tam giác ABM 

\(\Rightarrow EF||AB\Rightarrow ONEF\) là hình thang (1)

Lại có O là trung điểm AB \(\Rightarrow OF\) là đường trung bình tam giác ABM 

\(\Rightarrow OF=\dfrac{1}{2}AM=AE\) 

Mà \(OF||AE\) (cùng vuông góc BM)

\(\Rightarrow AEFO\) là hình bình hành \(\Rightarrow\widehat{OFE}=\widehat{OAE}\)

Mà \(EN=AE=\dfrac{1}{2}AM\Rightarrow\Delta AEN\) cân tại E \(\Rightarrow\widehat{OAE}=\widehat{ANE}\)

\(\widehat{ANE}+\widehat{ONE}=180^0\Rightarrow\widehat{OFE}+\widehat{ONE}=180^0\)

Lại có \(\widehat{ONE}+\widehat{NEF}=180^0\) (2 góc trong cùng phía)

\(\Rightarrow\widehat{OFE}=\widehat{NEF}\)

\(\Rightarrow ONEF\) là hình thang cân

NV
7 tháng 5 2023

loading...

6 tháng 6 2021

a. xét tứ giác OBMD có

∠DBO=90 ( tiếp tuyến By)

∠OMD=90 (tiếp tuyến tại M)

⇒∠DBO+∠OMD=90+90=180

⇒tứ giác OBMD nội tiếp

b.ΔOBF cân tại O do OB=OF=R

⇒∠B1=∠F1 (1)

có ∠E1=∠B(cùng phụ ∠EOB) (2)

từ (1);(2) ⇒∠F1=∠E1 (cùng nhìn OB)

⇒OFEB nội tiếp

⇒∠OFE=∠OBE=90

⇒EF⊥OF

⇒EF là tiếp tuyến của (O)

c. xét ΔKFO và ΔKEB có

∠FKO=∠EKB=90

∠E1=∠F1

⇒ΔKFO ∼ ΔKEB (g.g)

\(\dfrac{KO}{KB}=\dfrac{KF}{KE}\)⇒KO.KE=KF.KB

21 tháng 11 2022

Xét (O) có

CM,CA là các tiếp tuyến

nên CM=CA và OC là phân giác của góc MOA(1)

mà OM=OA

nên OC là đường trung trực của MA

=>OC vuông góc với MA tại I

Xét (O) có

DM,DB là các tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

mà OM=OB

nên OD là trung trực của BM

=>OD vuông góc với BM

Từ (1) và (2) suy ra góc COD=1/2*180=90 độ

 

a) Xét tứ giác AOMC có

\(\widehat{CAO}\) và \(\widehat{CMO}\) là hai góc đối

\(\widehat{CAO}+\widehat{CMO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AOMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Ta có: AOMC là tứ giác nội tiếp(cmt)

nên \(\widehat{MAO}=\widehat{OCM}\)(hai góc cùng nhìn cạnh OM)

hay \(\widehat{MAB}=\widehat{OCD}\)

Xét (O) có

CM là tiếp tuyến có M là tiếp điểm(Gt)

CA là tiếp tuyến có A là tiếp điểm(Gt)

Do đó: OC là tia phân giác của \(\widehat{AOM}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\Leftrightarrow\widehat{AOM}=2\cdot\widehat{COM}\)

Xét (O) có

DM là tiếp tuyến có M là tiếp điểm(gt)

DB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: OD là tia phân giác của \(\widehat{MOB}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\Leftrightarrow\widehat{BOM}=2\cdot\widehat{MOD}\)

Ta có: \(\widehat{AOM}+\widehat{BOM}=180^0\)(hai góc kề bù) 

mà \(\widehat{AOM}=2\cdot\widehat{COM}\)(cmt)

và \(\widehat{BOM}=2\cdot\widehat{MOD}\)(cmt)

nên \(2\cdot\widehat{COM}+2\cdot\widehat{MOD}=180^0\)

\(\Leftrightarrow\widehat{COM}+\widehat{MOD}=90^0\)

mà \(\widehat{COM}+\widehat{MOD}=\widehat{COD}\)(tia OM nằm giữa hai tia OC,OD)

nên \(\widehat{COD}=90^0\)

Xét ΔCOD có \(\widehat{COD}=90^0\)(cmt)

nên ΔCOD vuông tại O(Định nghĩa tam giác vuông)

Xét (O) có

ΔMAB nội tiếp đường tròn(M,A,B∈(O))

AB là đường kính(gt)

Do đó: ΔMAB vuông tại M(Định lí)

Xét ΔAMB vuông tại M và ΔCOD vuông tại O có

\(\widehat{MAB}=\widehat{OCD}\)(cmt)

Do đó: ΔAMB∼ΔCOD(g-g)

\(\dfrac{AM}{CO}=\dfrac{BM}{DO}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AM\cdot OD=BM\cdot OC\)(đpcm)