K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2018

A B O M H I K E N

1)  Ta thấy: Tứ giác AHMB nội tiếp đường tròn => ^HAM=^HBM; ^HMA=^HBA

Do H là điểm chính giữa của cung AM nên \(\Delta\)AHM cân tại H => ^HAM=^HMA

Từ đó suy ra: ^HBM=^HBA hay ^HBE=^HBA => BH là phân giác ^ABE

H thuộc nửa đường tròn đường kính AB => AH\(\perp\)BH hay BH\(\perp\)AE

Xét \(\Delta\)BAE: BH là phân giác ^ABE; BH\(\perp\)AE => \(\Delta\)BAE cân đỉnh B (đpcm).

2) Xét \(\Delta\)KHA và \(\Delta\)KAB:  ^KHA=^KAB (=900); ^AKB chung => \(\Delta\)KHA ~ \(\Delta\)KAB (g.g)

\(\Rightarrow\frac{KH}{KA}=\frac{KA}{KB}\Rightarrow KH.KB=KA^2\)(1)

Ta có: AE\(\perp\)BK tại H và AH=EH => A đối xứng với E qua BK => AK=KE. Thay vào (1):

\(\Rightarrow KH.KB=KE^2\)(đpcm).

3) Dễ thấy: 2 điểm A và N cùng nằm trên (B) => BA=BN => \(\Delta\)ABN cân đỉnh B

Mà BM\(\perp\)AN => BM là đường trung trực của AN hay BE là trung trực của AN

=> EA=EN => \(\Delta\)AEN cân đỉnh E = >^EAN=^ENA (2)

Lại có: ^HAM=^HBM (Cùng chắn cung HM) hay ^EAN=^EBI (3)

(2); (3) => ^ENA=^EBI hay ^ENI=^EBI => Tứ giác BIEN nội tiếp đường tròn (đpcm).

4) Ta có: ^KAB=900. Mà KA và AB đều cố định

Vậy để ^KAM=900 thì điểm M phải trùng với điểm B.

18 tháng 4 2020

Bạn tự vẽ hình nhé : 

1.Vì CM,CA là tiếp tuyến của (O) 

\(\Rightarrow CM\perp OM,CA\perp OA\)

\(\Rightarrow CAOM\)nội tiếp đường tròn đường kính OC

Tương tự DMOB nội tiếp đường tròn đường kính OD

2 . Vì CM,CA là tiếp tuyến của (O)

\(\Rightarrow CM=CA,OC\) là phân giác \(\widehat{AOM}\)

Tương tự DM = DB , OD là phân giác ^BOM

Mà \(\widehat{AOM}+\widehat{MOB}=180^0\)

\(\Rightarrow OC\perp OD\)

Lại có ; \(OM\perp CD\Rightarrow CM.DM=OM^2\Rightarrow CM.DM=R^2\)

Mà : \(CM=CA,DM=DB\Rightarrow AC.BD=R^2\Rightarrow AC.3R=R^2\Rightarrow AC=\frac{R}{3}\)

\(\Rightarrow S_{ABCD}=\frac{1}{2}AB\left(BD+CA\right)=\frac{1}{2}.2R.\left(3R+\frac{R}{3}\right)=\frac{10R^2}{3}\)

3.Vì CM,CA là tiếp tuyến của (O) 

\(\Rightarrow CO\perp AM=E\) là trung điểm AM

Tương tự \(OD\perp BM=F\) là trung điểm BM

\(\Rightarrow MN\) là đường trung bình \(\Delta ABC\Rightarrow EF//MN\)

Mà \(OE\perp ME,OF\perp MF,MN\perp ON\)

\(\Rightarrow M,E,N,O,F\in\) đường tròn đường kính OM 

\(\Rightarrow EFNO\) nội tiếp 

\(\Rightarrow\widehat{EFO}+\widehat{ENO}=180^0\)

Mà \(\widehat{NEF}+\widehat{ENO}=180^0\) ( EF // AB => EF//NO ) 

\(\Rightarrow EFON\) là hình thang cân 

15 tháng 5 2021

4) Ta có: \(AM//PQ\)( cùng vuông góc với OC )

Xét tam giác COQ có: \(EM//OQ\)

\(\Rightarrow\frac{CE}{CO}=\frac{EM}{OQ}\)( hệ quả của định lý Ta-let )  (1) 

Xét tam giác COP có: \(AE//OP\)

\(\Rightarrow\frac{CE}{CO}=\frac{AE}{OP}\)( hệ quả của định lý Ta-let ) (2) 

Từ (1) và (2) \(\Rightarrow\frac{EM}{OQ}=\frac{AE}{OP}\)Mà AE=EM

\(\Rightarrow OQ=OP\)

Xét tam giác CPQ và tam giác COP có chung đường cao hạ từ  C, đáy \(OP=\frac{PQ}{2}\)

\(\Rightarrow S_{\Delta CPQ}=2.S_{\Delta COP}\)

Ta có: \(S_{\Delta COP}=\frac{1}{2}OA.CP=\frac{1}{2}R.CP\)

Áp dụng hệ thức lượng trong tam giác COP vuông tại O có đường cao OA ta có:

\(OA^2=CA.AP\)

Mà \(CA.AP\le\frac{\left(CA+AP\right)^2}{4}=\frac{PC^2}{4}\)( BĐT cô-si )

Dấu "=" xảy ra \(\Leftrightarrow AC=AP\)

\(\Rightarrow PC^2\ge4OA^2\)

\(\Rightarrow PC\ge2OA=2R\)

\(\Rightarrow S_{\Delta COP}\ge R^2\)

\(\Rightarrow S_{\Delta CPQ}\ge2R^2\)

Dấu "=" xảy ra \(\Leftrightarrow AC=AP\) 

Mà tam giác COP vuông tại O có đường cao OA

\(\Rightarrow AC=AP=OA=R\)

Khi đó áp dụng định lý Py-ta-go vào tam giác CAO vuông tại A ta được:

\(AC^2+AO^2=OC^2\)

\(\Rightarrow OC=\sqrt{AC^2+AO^2}=R\sqrt{2}\)

Vậy điểm C thuộc đường thẳng d sao cho \(OC=R\sqrt{2}\)thì diện tích tam giác CPQ nhỏ nhất 

15 tháng 5 2021

giải hộ mik câu 4 nhé thanks