Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có
ΔCAB nội tiếp đường tròn(C,A,B∈(O))
AB là đường kính(gt)
Do đó: ΔCAB vuông tại C(Định lí)
⇔\(\widehat{ACB}=90^0\)
hay \(\widehat{KCB}=90^0\)
Xét tứ giác BHKC có
\(\widehat{BHK}\) và \(\widehat{KCB}\) là hai góc đối
\(\widehat{BHK}+\widehat{KCB}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BHKC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Xét (O) có
\(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{ACB}=90^0\)
Xét tứ giác BHKC có
\(\widehat{BHK}+\widehat{BCK}=180^0\)
nên BHKC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc ACB=1/2*sđ cung AB=90 độ
Vì góc KHB+góc KCB=180 độ
=>BHKC nội tiếp
Xét ΔAHK vuông tại H và ΔACB vuôg tại C có
góc HAK chung
=>ΔAHK đồng dạng với ΔACB
=>AH/AC=AK/AB
=>AH*AB=AC*AK
b: Xét ΔBIE vuông tại I và ΔBMA vuông tại M có
góc IBE chung
=>ΔBIE đồng dạng với ΔBMA
=>BI/BM=BE/BA
=>BM*BE=BI*BA
Xét ΔAIE vuông tại I và ΔACB vuông tại C có
góc IAE chung
=>ΔAIE đồng dạng với ΔACB
=>AI/AC=AE/AB
=>AI*AB=AC*AE
=>BE*BM+AE*AC=AI*AB+BI*AB=AB^2 ko đổi
a) Xét (O) có: \(\widehat{ACB}\) \(=90^0\) (góc nội tiếp chắn nửa đường tròn)
hay \(\widehat{KCB}\) \(=90^0\)
Lại có: \(MH\perp AB\left(K\in MH\right)\)
\(\Rightarrow\) \(KH\perp AB\)
\(\Rightarrow\) \(\widehat{KHB}\) \(=90^0\)
Vì \(\widehat{KCB}+\widehat{KHB}\) \(=90^0+90^0=180^0\)
\(\Rightarrow\) Tứ giác KCBH nội tiếp đường tròn (theo dấu hiệu nhận biết tứ giác nội tiếp)
b) Kẻ MH cắt (O) tại P, EI cắt (O) tại Q.
Xét (O) có: \(\left\{{}\begin{matrix}MP\perp AB\\AB=2R\end{matrix}\right.\)
\(\Rightarrow MH=HP\) (quan hệ vuông góc đường kính và dây)
\(\Rightarrow\) \(\stackrel\frown{AM}=\stackrel\frown{AP}\) (đl liên hệ giữa dây và cung)
Xét (O) có:
\(\widehat{MCA}=\stackrel\frown{AM}/2\) (đl góc nội tiếp)
\(\widehat{AMP}=\stackrel\frown{AP}/2\) (đl góc nội tiếp)
Mà \(\stackrel\frown{AM}=\stackrel\frown{AP}\) (cmtrn)
\(\Rightarrow\) \(\widehat{MCA}=\widehat{AMP}\) hay \(\widehat{MCA}=\widehat{AMK}\)
Xét ΔMKA∼ΔCMA vì:
\(\widehat{MAC}:chung\)
\(\widehat{AMK}=\widehat{MCA}\) (cmtrn)
\(\Rightarrow\frac{AK}{MA}=\frac{MA}{AC}\Leftrightarrow AK.AC=AM^2\) (đpcm)
c) Vì \(EI\perp AB\)
\(\Rightarrow\) \(\widehat{EIA}\) \(=90^0\)
Xét ΔAEI∼ΔABC vì:
\(\widehat{EIA}=\widehat{ACB}\) \(=90^0\)
\(\widehat{CAB}:chung\)
\(\Rightarrow\frac{AE}{AB}=\frac{AI}{AC}\Leftrightarrow AE.AC=AI.AB\) (1)
Xét (O) có: \(\widehat{AMB}\) \(=90^0\) (góc nội tiếp chắn nửa đường tròn)
Ta có: \(\widehat{EIA}+\widehat{EIB}\) \(=180^0\) (hai góc kề bù)
\(\Leftrightarrow\) \(\widehat{EIB}\) \(=180^0-\) \(\widehat{EIA}\) \(=180^0-90^0=90^0\)
Xét ΔEBM∼ΔABM vì:
\(\widehat{AHM}=\widehat{AMB}\) \(=90^0\)
\(\widehat{MAB}:chung\)
\(\Rightarrow\frac{EB}{AB}=\frac{BI}{BM}\Leftrightarrow EB.BM=BI.AB\) (2)
Cộng (1) và (2) Ta có:
\(AE.AK+BE.BM=AI.AB+IB.AB\)
\(\Leftrightarrow AE.AK+BE.BM=AB.\left(AI+IB\right)=AB.AB\)
\(\Leftrightarrow AE.AK+BE.BM=AB^2\) (mà \(AB=2R\))
\(\Leftrightarrow AE.AK+BE.BM=\left(2R\right)^2\)
Vì \(\left(2R\right)^2\) không thay đổi khi M chuyển động
\(\Rightarrow AE.AK+BE.BM\) không phụ thuộc vào vị trí M (đpcm).
sao dài thế bn ơi
cái bất đẳng thức mak không thay đổi khi M chuyển động là sao ko hiểu
ABCM nội tiếp (cùng thuộc đường tròn đường kính AB)
\(\Rightarrow\widehat{ABM}=\widehat{ACM}\) (cùng chắn AM)
Lại có \(\widehat{ABM}=\widehat{AMH}\) (cùng phụ \(\widehat{BAM}\))
\(\Rightarrow\widehat{ACM}=\widehat{AMH}\)
Xét hai tam giác AMK và ACM có:
\(\left\{{}\begin{matrix}\widehat{AMH}=\widehat{ACM}\left(cmt\right)\\\widehat{MAC}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta AMK\sim\Delta ACM\left(g.g\right)\)
\(\Rightarrow\dfrac{AM}{AC}=\dfrac{AK}{AM}\Rightarrow AM^2=AK.AC\)