Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Dễ thấy C là trực tâm của tam giác IAB nên C, I, H thẳng hàng.
Do tứ giác AICK là hình thang nội tiếp được đường tròn nên là hình thang cân.
Khi đó \(\widehat{IAK}=\widehat{CKA}\Rightarrow\widehat{IAB}=\widehat{NBA}\)
Suy ra tam giác NAB vuông cân tại N nên \(\widehat{NBA}=45^o\).
Ta có các tứ giác CMIN, AMIH nội tiếp được nên \(\widehat{NMH}=\widehat{NMI}+\widehat{HMI}=\widehat{ICN}+\widehat{IAB}=45^o+45^o=90^o\Rightarrow MN\perp MH\).
c) Đề phải là \(\dfrac{IC}{IH}+\dfrac{IA}{IN}+\dfrac{IB}{IM}\ge6\).
Đặt \(x=\dfrac{IH}{CH};y=\dfrac{IN}{AN};z=\dfrac{IM}{BM}\left(x,y,z< 1\right)\).
Ta có \(x+y+z=\dfrac{S_{IAB}}{S_{ABC}}+\dfrac{S_{IBC}}{S_{ABC}}+\dfrac{S_{ICA}}{S_{ABC}}=1\).
Lại có \(\dfrac{IH}{CH}=x\Rightarrow\dfrac{CH}{IH}=\dfrac{1}{x}\Rightarrow\dfrac{IC}{IH}=\dfrac{1}{x}-1\).
Tương tự \(\dfrac{IA}{IN}=\dfrac{1}{y}-1;\dfrac{IB}{IM}=\dfrac{1}{z}-1\).
Do đó \(\dfrac{IC}{IH}+\dfrac{IA}{IN}+\dfrac{IB}{IM}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-3\ge_{Svacxo}\dfrac{9}{x+y+z}-3=\dfrac{9}{1}-3=6\).
Vậy ta có đpcm.
Gọi O, J lần lượt là trung điểm của AB và MB.
Do MB là đường kính của nửa đường tròn tâm J nên ^MIB=90o⇒^CIM=90o.
Vậy nên tứ giác CHMI nội tiếp.
⇒^HIM=^HCM.
Tam giác ACM cân tại C nên ^HCM=^HCA.
Mà ^HCA=^HBC (Cùng phụ góc CAB)
Tam giác IJB cân tại J nên ^HBC=^JIB.
Tóm lại : ^HIM=^JIB⇒^HIM+^MIJ=^JIB+^MIJ
⇒^HIJ=^MIB=90o.
Vậy nên HI là tiếp tuyến tại I của đường trong đường kính MB
Gọi O, J lần lượt là trung điểm của AB và MB.
Do MB là đường kính của nửa đường tròn tâm J nên \widehat{MIB}=90^o\Rightarrow\widehat{CIM}=90^oMIB=90o⇒CIM=90o.
Vậy nên tứ giác CHMI nội tiếp.
\Rightarrow\widehat{HIM}=\widehat{HCM}⇒HIM=HCM.
Tam giác ACM cân tại C nên \widehat{HCM}=\widehat{HCA}HCM=HCA.
Mà \widehat{HCA}=\widehat{HBC}HCA=HBC (Cùng phụ góc CAB)
Tam giác IJB cân tại J nên \widehat{HBC}=\widehat{JIB}HBC=JIB.
suy ra : \widehat{HIM}=\widehat{JIB}\Rightarrow\widehat{HIM}+\widehat{MIJ}=\widehat{JIB}+\widehat{MIJ}HIM=JIB⇒HIM+MIJ=JIB+MIJ
\Rightarrow\widehat{HIJ}=\widehat{MIB}=90^o.⇒HIJ=MIB=90o.
Vậy nên HI là tiếp tuyến tại I của đường trong đường kính MB.