Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có bao nhiêu số có sáu chữ số mà tổng các chữ số của nó bằng 2?
6 số.
4 số.
5 số.
7 số.
Có bao nhiêu số có sáu chữ số mà tổng các chữ số của nó bằng 2?
6 số.
4 số.
5 số.
7 số.
a) Có n tia chung gốc. \(\rightarrow\)Có: \(\frac{n\left(n+1\right)}{2}\)(góc)
Lại có: \(\frac{n\left(n+1\right)}{2}=28\)
\(\Rightarrow n\left(n+1\right)=56=7.8\)
\(\Rightarrow n=7\)
Vậy \(n=7\)
b) Gọi số tia chung gốc ban đầu là n tia. \(\rightarrow\)Sau khi vẽ thêm 1 tia, tổng số tia chung gốc là n+1 tia
Ta có: \(\frac{\left(n+1\right)\left(n+2\right)}{2}-\frac{n\left(n+1\right)}{2}=9\)
\(\frac{\left(n+1\right)\left(n+2\right)-n\left(n+1\right)}{2}=9\)
\(\frac{\left(n+1\right)\left(n+2-n\right)}{2}=9\)
\(\frac{2\left(n+1\right)}{2}=9\)
\(n+1=9\)
\(n=8\)
Vậy \(n=8\)
Cứ 1 tia sẽ tạo với n - 1 tia còn lại n - 1 góc
Với n tia ta sẽ tạo được số góc là: (n - 1) \(\times\) n góc
Số góc tạo đươc là: (n-1)n
Theo cách tính trên mỗi góc đã được tính hai lần nên số góc được tạo bởi n tia chung gốc là:
(n-1)n:2
em cảm ơn