Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (n+3)2-(n-1)2
= n2+6n+9-n2+2n-1
= 8n + 8
= 8(n+1) chia hết cho 8
`A=n/3+n^2/2+n^3/6`
`=(n^3+3n^2+2n)/6`
`=(n(n^2+3n+2))/6`
`=(n(n+1)(n+2))/6`
Vì `n(n+1)(n+2)` là tích 3 số nguyên liên tiếp
`=>n(n+1)(n+2) vdots 6`
`=>(n(n+1)(n+2))/6 in Z(forall x in Z)`
Để ; \(\frac{n+3}{n+1}\in Z\)
Thì n + 3 chia hết cho n + 1
=> (n + 1) + 2 chia hết cho n + 1
=> 2 chia hết cho n + 1
=> n + 1 thuộc Ư(2) = {-2;-1;1;2}
Ta có bảng :
n + 1 | -2 | -1 | 1 | 2 |
n | -3 | -2 | 0 | 1 |
Tìm n thuộc Z để các phân thức sau có giá trị nguyên:
1) \(\frac{n-5}{2n+1}\)
2) \(\frac{n^2+4}{n-1}\)
1) Để phân thức đạt trị nguyên
=> n - 5 chia hết cho 2n + 1
<=> 2n - 10 chia hết cho 2n + 1
<=> 2n + 1 - 11 chia hết cho 2n + 1
<=> 11 chia hết cho 2n + 1
=> 2n + 1 thuộc Ư(11) = {1 ; -1 ; 11 ; -11}
Ta có bảng sau :
2n + 1 | 1 | -1 | 11 | -11 |
n | 0 | -1 | 5 | -6 |
2) Như câu 1 , ta có :
n2 + 4 chia hết cho n - 1
n2 - n + n + 4 chia hết cho n - 1
<=> n(n - 1) + n + 4 chia hết cho n - 1
<=> n - 1 + 5 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5) = {1 ; -1; 5 ; -5}
Còn lại giống 1 , lập bảng xét giá trị n nha !
5. Ta có: a(a - 1) - (a + 3)(a + 2) = a2 - a - a2 - 2a - 3a - 6
= -6a - 6 = -6(a + 1) \(⋮\)6
<=> -6(a + 1) \(⋮\)6 \(\forall\)a \(\in\)Z
<=> a(a - 1) - (a + 3)(a + 2) \(⋮\) 6 \(\forall\)a \(\in\)Z
6. Thay x = 99 vào biểu thức A, ta có:
A = 995 - 100.994 + 100. 993 - 100.992 + 100 . 99 - 9
A = 995 - (99 + 1).994 + (99 + 1).993 - (99 + 1).992 + (99 + 1).99 - 9
A = 995 - 995 - 994 + 994 + 993 - 993 - 992 + 992 + 99 - 9
A = 99 - 9
A = 90
Vậy ....
Bài 3:
(3x-1)(2x+7)-(x+1)(6x-5)=16.
=> 6x2+21x-2x-7-(6x2-5x+6x-5)=16
=> 6x2+21x-2x-7-6x2+5x-6x+5=16
=> 18x-2=16
=> 18x=16+2
=> 18x=18
=> x=1
Bài 4:
ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6=6\left(n+1\right)⋮6\)
⇔6(n+1) chia hết cho 6 với mọi n là số nguyên
⇔n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên
vậy n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên (đpcm)
Bài 6:
\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(\Rightarrow A=x^5-\left(99+1\right)x^4+\left(99+1\right)x^3-\left(99+1\right)x^2+\left(99+1\right)x-9\)
\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)
\(\Rightarrow A=\left(x^5-99x^4\right)-\left(x^4-99x^3\right)+\left(x^3-99x^2\right)-\left(x^2-99x\right)+x-9\)
\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)-x\left(x-99\right)+x-9\)
\(\Rightarrow A=\left(x-99\right)\left(x^4-x^3+x^2-x\right)+x-9\)
Thay 99=x, ta được:
\(A=\left(x-x\right)\left(x^4-x^3+x^2-x\right)+x-9\)
\(\Rightarrow A=x-9\)
Thay x=99 ta được:
\(A=99-9=90\)
1. ĐKXĐ : \(x\ne\pm8\)
Ta có :
\(\frac{A}{x^2-64}=\frac{x}{x-8}\)
\(\Leftrightarrow\frac{A}{\left(x-8\right)\left(x+8\right)}=\frac{x}{x-8}\)
\(\Leftrightarrow A=\frac{x}{x-8}.\left(x-8\right)\cdot\left(x+8\right)\)
\(\Leftrightarrow A=x\left(x+8\right)\)
Vậy...
2/ \(A=\frac{32x-8x^2+2x^3}{x^3+64}=\frac{2x\left(x^2-4x+16\right)}{\left(x+4\right)\left(x^2-4x+16\right)}=\frac{2x}{x+4}\)
Vậy...
3/ \(M=\frac{4}{x^2+4x+7}=\frac{4}{\left(x^2+4x+4\right)+3}=\frac{4}{\left(x+2\right)^2+3}\)
Với mọi x ta có :
\(\left(x+2\right)^2\ge0\)
\(\Leftrightarrow\left(x+2\right)^2+3\ge3\)
\(\Leftrightarrow\frac{4}{\left(x+2\right)^2+3}\le\frac{4}{3}\)
\(\Leftrightarrow M\le\frac{4}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=-2\)
Vậy....
5/ \(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)
\(=\frac{1}{x-y}-\frac{1}{y-z}+\frac{1}{y-z}-\frac{1}{z-x}+\frac{1}{z-x}-\frac{1}{x-y}\)
\(=0\)
Vậy...