K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

a)Gọi ƯCLN(2n+1,2n+3) = d     (d thuộc N*)

=>2n+1 chia hết cho d và 2n+3 chia hết cho d

=>(2n+3)-(2n+1) chia hết cho d

=>2 chia hết cho d

=>d thuộc Ư(2)

Ta có: Ư(2)={1;2}

Vì 2n+1 và 2n+3 là số lẻ nên d không thể bằng 2

=>d=1

Vậy ƯCLN(2n+1,2n+3) = 1             (đpcm)

b)Gọi ƯCLN(2n+5,3n+7) = d         (d thuộc N*)

=>2n+5 chia hết cho d và 3n+7 chia hết cho d

=>6n+15 chia hết cho d và 6n+14 chia hết cho d 

=>(6n+15)-(6n+14) chia hết cho d

=>1 chia hết cho d

=>d thuộc Ư(1) =>d=1

Vậy ƯCLN(2n+5,3n+7) = 1             (đpcm)

14 tháng 11 2017

a) Đặt: ƯCLN(2n+1,2n+3) = d

Ta có: 2n+1 \(⋮\)d và 2n+3 \(⋮\)d

\(\Rightarrow\)(2n+3) - (2n+1) \(⋮\)d

\(\Leftrightarrow\)2n+3 - 2n-1 \(⋮\)d

\(\Leftrightarrow\)2\(⋮\)d

Vì 2n+3 ko chia hết cho 2

Nên 1\(⋮\)d

\(\Leftrightarrow\)d=1

Vậy ƯCLN( 2n+1,2n+3) = 1(đpcm)

b) Đặt ƯCLN( 2n+5,3n+7 ) = d

Ta có: 2n+5 \(⋮\)\(\Leftrightarrow\)3(2n+5) \(⋮\)d

                             \(\Leftrightarrow\)6n+15 \(⋮\)d

            3n+7\(⋮\)\(\Leftrightarrow\)2(3n+7) \(⋮\)d

                             \(\Leftrightarrow\)6n+14 \(⋮\)d

\(\Rightarrow\)(6n+15) - (6n+14)\(⋮\)d

\(\Leftrightarrow\)6n+15 - 6n - 14\(⋮\)d

\(\Leftrightarrow\)1\(⋮\)d

\(\Leftrightarrow\)d = 1

Vậy ƯCLN(2n+5,3n+7) = 1(đpcm)

Kb vs mk nha

16 tháng 12 2017

gọi UCLN(2n+1,2n+3)=k

Ta có:

2n+1\(⋮\)k

2n+3\(⋮\)k

=>(2n+3)-(2n+1)\(⋮\)k

mik đang bận nên tẹp nữa làm tiếp

16 tháng 12 2017

gọi d là ƯCLN ( 2n + 1 , 2n + 3 )

\(\Rightarrow\)2n + 1 \(⋮\)d ; 2n + 3 \(⋮\)d

\(\Rightarrow\) ( 2n + 3 ) - ( 2n + 1 ) \(⋮\)d

\(\Rightarrow\)\(⋮\)d

Mà 2n + 1 là số lẻ \(\Rightarrow\)d cũng là số lẻ \(\Rightarrow\)d = 1

Vậy ƯCLN ( 2n + 1 , 2n + 3 ) = 1

17 tháng 11 2017

ta lập biểu thưc vfhgjhkjggj

fhfhgjh;hjghg-gjgjh=ggrutrutiyỳjkjfgf[ỵt[tjrgtgfugeidgưeuđewvd76e

a.b.c.d.e.f.g=100

fsjshssiusksuusmsumsú,súksúksúlsusúkúlsú=shsjsk-sssskảy,hehhhugeywhoewugrfteocjnr;djfctta  

ta lập luôn 1 biểu thức ậmkrgkfhrhfytf7eỷ6ềwỷwt9fuềe9re6dteudfudỷ4hd94

27 tháng 8 2017

a) 3n + 5 chia hết cho n+1 

ta có 3n+5=3n+3+2=3.(n+1)+2 

vì 3.(n+1) chia hết cho n+1 =>để 3.(n+1)+2 chia hết cho n+1 thì 2 phải chia hết cho n+1 

=> n+1 thuộc {1;2} =>n thuộc {0;1} 

b) 3n + 5 chia hết cho 2n+1 

ta có: 3n+5=2n+n+1+4=(2n+1)+(n+4) 

vì 2n+1 chia hết cho 2n+1 =>để (2n+1)+(n+4) chia hết cho 2n+1 thì (n+4) phải chia hết cho 2n +1 

=>n+4>=2n+1 

n+1+3 >=n+n+1 

3>=n =>n thuộc {0;1;2;3} 

* với n=0 =>n+4=4 ; 2n+1=1 vậy n+4 chia hết cho 2n+1 =>n=0 thỏa mãn 

* với n=1 =>n+4=4 ; 2n+1=1 vậy n+4 chia hết cho 2n+1 =>n=0 thỏa mãn 

c) 2n + 3 chia hết cho 5 - 2n 

để 5-2n >=0 =>5-2n >=5-5 =>2n <=5 => n thuộc{0;1;2} 

* với n=0 =>2n+3 =3 ; 5-2n=5 không thỏa mãn 

*với n=1 =>2n+3=5 ;5 -2n=3 không thỏa mãn 

*với n=2 =>2n+3=7 ; 5-2n =1 thỏa mãn vì 2n + 3 chia hết cho 5 - 2n 

vậy n=3

17 tháng 11 2017

Vì 396 : a dư 30 nên a > 30

Theo bài ra ta có : 

396 chia a dư 30 

=> ( 396 - 30 ) \(⋮\)a => 366  \(⋮\)a

Lại có : 473 chia a dư 23

=> ( 473 - 23 ) \(⋮\)a => 450 \(⋮\)a

Từ (1) và (2) => a \(\in\)ƯC( 366;450)

Ta có : 366 = 2 .3 . 61

             450 = 2 . 32 . 52

Khi đó ƯCLN( 366;450 ) = 2 . 3 = 6

=> ƯC( 366;450 ) = Ư(6) = { 1 ;2 ; 3 ; 6 }

Vậy a \(\in\){1;2;3;6}

7 tháng 4 2017

Giả sử \(ƯCLN\left(n,2n+1\right)=d\)

\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+1⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2n⋮d\\2n+1⋮d\end{cases}}\)

\(\Rightarrow2n+1-2n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+1,n\right)=1\)

Vậy \(ƯCLN\left(2n+1,n\right)=1\)với mọi \(n\in N\)