K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2015

Gọi ƯCLN ( 2n + 3 ; n + 1 ) là : d

Ta có : n + 1 chia hết d => 2( n + 1 ) chia hết  d hay 2n + 2 chia hết d

           2n + 3 chia hết d

Xét ( 2n + 3 ) - ( 2n - 2 ) = ( 2n - 2n ) + ( 3 - 2 )

                                    =       0        +    1

                                    =                 1

=>   d thuộc Ư ( 1 )

=> d = 1

      Vậy 2n + 3 và n + 1 là 2 số nguyên tố cùng nhau .

19 tháng 12 2015

gọi d là ƯCLN(2n+3;n+1)

Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)

         2n+3 chia hết cho d(2)

Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d

                           hay 1 chia hết cho d

Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)

19 tháng 12 2015

làm ơn làm phước cho mk 3 tick đi mk mà

please

15 tháng 12 2015

đặt UCLN (2n+3;n+1)=d

n+1 chia hết cho d

=>2n+2 chia hết cho d

2n+3 chia hết cho d

=>[(2n+3)-(2n+2)] chia hết cho d

1 chia hết cho d => d = 1

vậy UCLN (2n+3;n+1)=1

Hay 2n+3 và n+1 là 2 số nguyên tố cùng nhau

ai ủng hộ vài li-ke đi , please

16 tháng 11 2020

e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1

còn n+1-n=1 nên (n,n+1)=1

22 tháng 12 2021

Gọi (2n+1, n+1) = d (d thuộc N*)

⇒⎧⎨⎩2n+1⋮dn+1⋮d⇒⎧⎨⎩2n+1⋮d2n+2⋮d⇒{2n+1⋮dn+1⋮d⇒{2n+1⋮d2n+2⋮d

⇒(2n+2)−(2n+1)⋮d⇒(2n+2)−(2n+1)⋮d

⇒2n+2−2n−1⋮d⇒2n+2−2n−1⋮d

⇒1⋮d⇒1⋮d

Mà d thuộc N*

nên d = 1

=> (2n+1, n+1) = 1

=> 2n + 1 và n + 1 là 2 số nguyên tố cùng nhau  (đpcm)

28 tháng 12 2016

Gọi d là U7CLN(2n+3;n+1)

Ta có : 2n+3 chia hết cho d và n+1 chia hết cho d

Từ đó , ta suy ra : {(2n+3)-[2(n+1)]} chia hết cho d

                        =>(2n+3)-(2n+2) chia hết cho d

                        =>(2n-2n)+(3-2) chia hết cho d

                        =>    0    +   1   chia hết cho d

                        =>          1        chia hết cho d

Suy ra : d = 1 [ tức là ƯCLN(2n+3;n+1)=1]

Vậy : 2n+3 và n+1 là hai số nguyên tố cùng nhau

28 tháng 12 2016

Gọi d = UCLN(2n+3; n+1)

Ta có: 2n+3 và n+1 chia hết cho d

[2n+3-2(n+1)] chia hết cho d

2n+3-2n+2 chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy hai số 2n+3 và n+1 là hai số nguyên tố cùng nhau

6 tháng 1 2015

Gọi ƯCLN (2n+3,n+1) là d

Ta có: 2n+3 chia hết cho d và n+1 chia hết cho d 

=>2n+3 chia hết cho d và 2n+2 chia hết cho d 

=>(2n+3)-(2n+2) chia hết cho d 

=>2n+3-2n-2 chia hết cho d 

=> 1 chia hết cho d => d=1

Vậy với n là số tự nhiên thì 2n+3 và n+1 là 2 số nguyên tố cùng nhau.