Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Lời giải:
$1440=2^5.3^2.5$
Để $k=n!\vdots 1440$ thì $n!\vdots 2^5$; $n!\vdots 3^2; n!\vdots 5$
Để $n!\vdots 3^2; 5$ thì $n\geq 6(1)$
Để $n!\vdots 2^5$. Để ý $2=2^1, 4=2^2, 6=2.3, 8=2^3$. Để $n!\vdots 2^5$ thì $n\geq 8(2)$
Từ $(1); (2)$ suy ra $n\geq 8$. Giá tri nhỏ nhất của $n$ có thể là $8$
Chọn A
Với số tự nhiên n ≥ 1, ta có:
Suy ra:
Cộng tương ứng hai vế các đẳng thức trên ta có với mọi số tự nhiên n ≥ 1
Để
Ta kiểm tra với các giá trị k ∈ ℕ từ bé đến lớn
Vậy số nguyên n > 1 nhỏ nhất là n = 41( ứng với k = 3).
Chọn A