K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2021

Do \(n>3\) và không chia hết cho 3

\(\Rightarrow\)\(n^2>3\) và không chia hết cho 3.

Xét 3 số tự nhiên liên tiếp \(n^2-1;n^2;n^2+1\)có:

\(n^2\)không chia hết cho \(3\)

\(\Rightarrow\) 1 trong 2 số \(n^2-1,n^2+1⋮3\) sẽ chia hết cho 3 (không xảy ra TH 2 số cùng chia hết cho 3)

\(\Rightarrow\) 1 trong 2 số là số nguyên tố (không thể cùng là số nguyên tố vì ko cùng chia hết cho 3)

 Vậy \(n^2-1,n^2+1\) không thể đồng thời là số nguyên tố.

Vì n không chí hết cho 3 => n2 không chia hết cho 3

Xét 3 stn liên tiếp n2 - 1; n2; n2 + 1

Vì n2 không chia hết cho 3 => 1 trong 2 số n2 - 1 và n2 = 1 sẽ chia hết cho 3

=> 1 trong 2 số đó sẽ là hợp số

Vậy n2 - 1 và n2 + 1 không thể đồng thời là snt 

6 tháng 11 2020

vì n không chia hết cho 3 => n^2 không chia hết cho 3 

xét 3 số tự nhiên liên tiếp n^2-1; n^2; n^2+1

vì n^2 không chia hết cho 3 => 1 trong 2 số n^2-1 và n^2 sẽ chia hết cho 3

=> 1 trong 2 số đó sẽ là hợp số 

vậy n^2-1 và n^2+1 không thể đồng thời là số nguyên tố

30 tháng 12 2015

n.n có trên 2 ước là 1, n và n.n và các ước khác

 

30 tháng 10 2017

3 tháng 1 2020

a) Nếu n = 3k+1 thì  n 2 = (3k+1)(3k+1) hay  n 2  = 3k(3k+1)+3k+1

Rõ ràng  n 2  chia cho 3 dư 1

Nếu n = 3k+2 thì  n 2 = (3k+2)(3k+2)  hay  n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên  n 2  chia cho 3 dư 1.

b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2  chia cho 3 dư 1 tức là   p 2 = 3 k + 1  do đó  p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3

Vậy p 2 + 2003  là hợp số

25 tháng 6 2023

a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2

+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k+ 2k) + 1 => n2 chia cho 3 dư 1

+) n chia cho 3 dư 2 => n = 3k + 2 => n= (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k+ 4k +1) + 1 => n2 chia cho 3 dư 1

Vậy...

b) p là số nguyên tố > 3 => p lẻ => plẻ => p + 2003 chẵn => p2 + 2003 là hợp số

9 tháng 9 2017

Nếu n không chia hết cho 3\(\Rightarrow\)n2 không chia hết cho 3=>n2 chia 3 dư 1 hoặc 2.

-Nếu n2 chia 3 dư 1 =>n2 -1 chia hết cho 3.

-Nếu n2 chia 3 dư 2 =>n2+1 chia hết cho 3.

Vậy n2 -1 và n2+1 không thể đồng thời là hai số nguyên tố vì một trong hai số trên chia hết cho 3(đpcm)

17 tháng 1 2016

Vì n không chia hết cho 3 => n2 không chia hết cho 3

Xét 3 số tự nhiên liên tiếp: n2 - 1;n2; n2 + 1

Vì n2 không chia hết cho 3 => 1 trong 2 số n2 - 1 và n2 + 1 chia hết cho 3 => 1 trong 2 số đó có 1 số là hợp số

Vậy n2 - 1 và n2 + 1 không đồng thời là số nguyên tố

3 tháng 1 2019

như cứt