K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2021

a, Khi $f(x)$ có nghiệm là $-4$ thì ta suy ra

$f(-4)=0$ hay $(m-2).(-4)+2m-3=0$

$⇔-2m=-5$

$⇔m=\dfrac{5}{2}$

b, Khi $f(x)$ có nghiệm nguyên thì tức là
$f(x)=0;x∈Z$

hay $(m-2)x+2m-3=0$

$⇔(m-2)x=3-2m$

với $m=2$ thì ta suy ra $0=1$ loại
$m \neq 2$ suy ra $x=\dfrac{3-2m}{m-2}$

hay $x=\dfrac{-1-2(m-2)}{m-2}=\dfrac{-1}{m-2}-2$

Mà $x∈Z;-2∈Z$

Nên $\dfrac{-1}{m-2}∈Z$

Hay $m-2∈Ư(-1)$

suy ra \(m-2∈{-1;1}\)

nên $m=1$ hoặc $m=3$

Với $m=1$ suy ra $x=-3$

$m=3$ suy ra $x=-3$

Vậy $m=1$ hoặc $m=3$ thì đa thức cho có nghiệm nguyên $x=-3$

 

a: Khi x=-2 thì \(M=3-\left(-2-1\right)^2=3-9=-6\)

Khi x=0 thì \(M=3-\left(0-1\right)^2=2\)

Khi x=3 thì \(M=3-\left(3-1\right)^2=3-2^2=-1\)

b: Để M=6 thì \(3-\left(x-1\right)^2=6\)

\(\Leftrightarrow\left(x-1\right)^2=-3\)(loại)

c: \(M=-\left(x-1\right)^2+3\le3\forall x\)

Dấu '=' xảy ra khi x=1

7 tháng 3 2022

a, Thay x=-2 vào M ta có:
\(M=3-\left(-2-1\right)^2=3-\left(-3\right)^2=3-9=-6\)

 Thay x=0 vào M ta có:
\(M=3-\left(0-1\right)^2=3-\left(-1\right)^2=3-1=2\)

 Thay x=3 vào M ta có:
\(M=3-\left(3-1\right)^2=3-2^2=3-4=-1\)

b, Để M=6 thì:

\(3-\left(x-1\right)^2=6\\ \Leftrightarrow\left(x-1\right)^2=-3\left(vô.lí\right)\)

c, Ta có: \(\left(x-1\right)^2\ge0\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

\(\Rightarrow M=3-\left(x-1\right)^2\le3\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

Vậy \(M_{max}=3\Leftrightarrow x=1\)