Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó có dạng \(\overline{xy}=10x+y\) với x;y là các số tự nhiên từ 1 tới 9
Do số đó gấp 4 lần tổng các chữ số của nó nên ta có:
\(10x+y=4\left(x+y\right)\Rightarrow2x-y=0\)
Khi viết ngược số đó ta được số mới có giá trị là: \(10y+x\)
Do số mới lớn hơn số ban đầu 36 đơn vị nên:
\(10y+x-\left(10x+y\right)=36\Rightarrow y-x=4\)
Ta được hệ: \(\left\{{}\begin{matrix}2x-y=0\\y-x=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=8\end{matrix}\right.\)
Vậy số đó là 48
- Gọi hai chữ số càn tìm là : \(\overline{xy}\left(x,y\in N,0\le x,y< 10\right)\)
Ta có : Số đó gấp 4 lần tổng các chữ số của nó .
=> 10x + y = 4 ( x + y )
=> 10x + y - 4x - 4y = 6x - 3y = 0 ( I )
Lại có : Nếu viết hai chữ số của nó theo thứ tự ngược lại thì đc số mới lớn hơn số ban đầu 36 đơn vị .
=> \(\overline{xy}+36=\overline{yx}\)
=> 10x + y + 36 = 10y + x
=> 9y - 9x = 36 ( II )
- Kết hợp ( I ) và ( II ) ta được hệ phương tình : Giai ( I ) và ( II ) ta được :
\(\left\{{}\begin{matrix}x=4\\y=8\end{matrix}\right.\)
Vậy chữ số cần tìm là 48 .
làm sao để viết có dấu gạch ngang trên đầu vậy bạn?
Gọi số đó là ab
Theo đề bài ta có :
a + b = 11
Và ba - ab = 45
=> 10b + a - 10a - b = 45
=> 9b - 9a = 45
=> b - a = 5
Mà a + b = 11
=> b = 8, a = 3
=> Số đó là 38
Gọi số tự nhiên đó là ab (ab >10). Theo đề bài ta có :
Số đó gấp 4 lần tổng các chữ số của nó nên ta có phương trình:
\(ab=4\left(a+b\right)\Leftrightarrow10a+b=4a+4b\) \(\Leftrightarrow10a-4a+b-4b=0\Leftrightarrow6a-3b=0\) ⇔ 2a-b=0(1)
Nếu viết 2 chữ số của nó theo thứ tự ngược lại thì được số mới lớn hơn số ban đầu 36 đơn vị nên ta có phương trình :
\(ba-ab=36\Leftrightarrow10b+a-10a-b=36\)
\(\Leftrightarrow9b-9a=36\Leftrightarrow b-a=4\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}2a-b=0\left(1\right)\\b-a=4\left(2\right)\end{matrix}\right.\)
Cộng từng vế của (1) và (2) ta được : a=4 Thay vào (2) ta được:
\(b-4=4\Leftrightarrow b=8\) ⇒ab=48. Vậy...
Số đó là số 74 .
Bài này bạn dùng phương pháp thử chọn .