Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
( abc + bca + cab )
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= 111a + 111b + 111c
= 111 . ( a + b + c ) \(⋮\)( a + b + c ) → ĐPCM
Vậy, ................
c)
gọi 2 số chẳn liên tiếp là 2k ;2k+2 (k thuộc N)
ta có \(2k.\left(2k+2\right)=2k.2k+2k.2\)
\(=2.2.k.k+4k\)
\(=4k^2+4k\)
mà \(4k^2+4k\) chia hết cho 4
=>\(2k.\left(2k+2\right)\) chia hết cho 4
a)Goi 2 so tu nhien lien tiep la a;a+1
Neu a la so chan:a.(a+1) la so chan hay a.(a+1) chia het cho 2
Neu a la so le:a+1 la so le
Vay tich2 so tu nhien lien tiep chia het cho 2
Gọi số có 3 chữ số mà có chữ số hàng chục bằng chữ số hàng đơn vị là abb(0<1;b<=9)
ta có tổng các chữ số của nó =7 nên: a+2b=7=> a=7-2b(1)
Ta có: abb= a.100+b.10 +b Thay a= 7-2b vào ta có
abb= (7-2a).100+b.10+b
=700-200b+11b
=700-189b
Vì 700\(⋮\)7 và 189b\(⋮\)7 nên 700-189b \(⋮\)7
vậy abb\(⋮\)7
Vậy số có 3 chữ số có tổng các chữ số =7 và có chữ số hàng chục = chữ số hàng đơn vị thì số đó chia hết cho 7
396 = 4.9.11
+) Số đã cho có 2 chữ số tận cùng là 16 chia hết cho 4 nên số dã cho chia hết cho 4
+) Tổng các chữ số của số đã cho = 1+5+5+ * + 7 + 1 + 0 + * + 4 + * + 1 + 6 = 30 + * + * + * = 30 + 6 = 36 (Vì * + * + * luôn = 6)
36 chia hết cho 9 nên Số đó cũng chia hết cho 9
+) Xét tổng các chữ số ở hàng lẻ tính từ chữ số đầu tiên của số đã cho = 1 + 5 + 7 + 0 + 4 + 1 = 18
Tổng các chữ số ở hàng chẵn = 5 + * + 1 + * + * + 6 = 12 + 6 = 18
=> Tổng các chữ số ở hàng chẵn - Tổng các chữ số ở hàng lẻ = 18 - 18 = 0 chia hết cho 11
=> số đã cho chia hết cho 11
Vậy số đã cho chia hết cho 4;9;11 => số đó chia hết cho 396
tick nha
a) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))
Nếu m chia hết cho 2 thì ta có điều cần chứng minh
Nếu n = 2k + 1 thì n + 1 = 2k + 2 chia hết cho 2
b) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))
Ta có: n + ( n + 1 ) + ( n + 2 ) = 3n + 3 chia hết cho 3
=> ĐPCM
n = 111.111.111.111.111.111.111.111.111
= 111.111.111.000.000.000.000.000.000 + ...+ 111.111.111.000.000.000 + 111.111.111
= 111.111.111.10^18 + 111.111.111.10^9 + 111.111.111 111.111.111.﴾10^18 + 10^9 + 1 ﴿ Số 111.111.111 chia hết cho 9 vì tổng các chữ số bằng 9
Số 10^18 + 10^9 + 1 chia hết cho 3 vì tổng này là một số có tổng các chữ số bằng 3
Vì 27 chia hết cho 3; 9 nên kết quả trên cũng là chia hết cho 27
Ta có: abc + bca + cab
= 100.a + 10.b + c + 100.b + 10.c + a + 100.c + 10.a + b
= (100.a + a + 10.a) + (10.b + 100.b + b) + (c + 10.c + 100.c)
= 111.a + 111.b + 111.c
= 111.(a+b+c)
Do 111.(a+b+c) chia hết cho (a+b+c)
Nên (abc+bca+cab) chia hết cho (a+b+c) (Bài toán được chứng minh)