K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(abc+bca+cab)

=100a+10b+c+100b+10c+a+100c+10a+b

=111a+111b+111c

=111(a+b+c) chia hết cho a, b, c-> Điều phải chứng minh

4 tháng 8 2016

(abc+bca+cab)

=100a+10b+c+100b+10c+a+100c+10a+b

=111a+111b+111c

=111(a+b+c) chia hết a+b+c

27 tháng 6 2017

(abc+ bca +cab) = 100a +10 b +c +100 b+10 c +a +100c+10a+b

=111a +111b +111c

=111( a+b+c) chia hết cho a,b,c

=>Điều phải chứng minh

27 tháng 6 2017

cảm ơn bạn nha

20 tháng 2 2016

(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37 
---> 1000.a + 100.b + 10.c chia hết cho 37 
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
---> 100.b + 10.c + a = (bca) chia hết cho 37 

(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37 
---> 1000.b + 100.c + 10.a chia hết cho 37 
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37) 
---> 100.c + 10.a + b = (cab) chia hết cho 37

13 tháng 10 2017

B1 a

gọi 4 số TN liên tiếp là :

a ; a+1 ;a+2 ;a+3

lấy a+3-a=3 chia hết cho 3

Bài 2

có 4n+3 chia hết cho 2n+1 (1)

lại có 2n+1 chia hết cho 2n+1

=>4n+2 chia hết cho 2n+1 (2)

Lấy (1)-(2)

=>1chia hết cho 2n+1

=>2n+1=1 hoăc -1

tự giải tiếp

12 tháng 12 2014

Để mình giải giúp ha !!

ta có 20a20a20a=20a20a . 1000 +20a =(20a . 1000+20a)1000+20a

                                                        =1001 . 20a . 1000 + 20a 

Theo đề bài 20a20a20a chia hết cho 7 , mà 1001 chia hết cho 7 nên => 20a chia hết cho 7

nên (4 + a) chia hết cho 7 . Vậy a = 3

13 tháng 12 2014

b)ta co:ab+ba=(a.10+b)+(b.10+a)=11a+11b

suy ra ab+ba chia het cho 11

8 tháng 12 2014

                   Tớ giải hộ bạn câu 1 nhé. (Câu 2 tớ cũng đăng lên olm rồi <_>)

1.                                                  Giải

Gọi bốn số tự nhiên tùy ý là : A1; A2; A3; A4.

Khi chia : A1; A2; A3; A4 cho 3, ta được:

A1= 3 x k1 + r1 với: 0  r< 3

A2=3 x k2 + r2 với: 0 ≥ r2 < 3

A3=3 x k3 + r3 với: 0 ≥ r3 <3

A4=3 x k4 + r4 với: ≥ r4 <3

Vì khi chia cho 3 các số dư r1; r2; r3; r4 chỉ nhận 1 trong 3 giá trị: 0; 1; 2. Nên chắc chắn có ít nhất 2 số bằng nhau.

Ta lấy: r1 = r23k2

=>Ta có: A1 - A2 = (3k1 + r1) - ( 3k2 + r2) = (3k1 -3k2) chia hết cho 3.

=>Trong bốn số tự nhiên tùy ý, có ít nhất 2 số có hiệu chia hết cho 3.

15 tháng 7 2015

(abc) chia hết cho 37=> 100.a + 10.b + c chia hết cho 37 
=> 1000.a + 100.b + 10.c chia hết cho 37 
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
=> 100.b + 10.c + a = (bca) chia hết cho 37 

4 tháng 8 2016

 (abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37 
---> 1000.a + 100.b + 10.c chia hết cho 37 
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
---> 100.b + 10.c + a = (bca) chia hết cho 37 

(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37 
---> 1000.b + 100.c + 10.a chia hết cho 37 
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37) 
---> 100.c + 10.a + b = (cab) chia hết cho 37

25 tháng 11 2021

Số (abc) chia hết cho 37 => 100a + 10b + c chia hết cho 37 =>(Nhân 10 vô) 1000a + 100b + 10c chia hết cho 37 (1). Trừ cho 999a thì (1) vẫn chia hết cho 37 do 999 chia hết cho 37 từ đó suy ra đpcm!