Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có lực đàn hồi
F = k . | Δ l | ⇒ k = F | Δ l | ⇒ k = 2 0 , 01 ⇒ k = 200 N / m W t d h = 1 2 k . ( Δ l ) 2 = 1 2 .100.0 , 01 2 = 5.10 − 3 ( J )
b. Theo độ biến thiên thế năng
A = 1 2 k . ( Δ l 1 ) 2 − 1 2 k . ( Δ l 2 ) 2 = 1 2 .100 ( 0 , 02 2 − 0 , 035 2 ) = - 0 , 04125 ( J )
a) Độ lớn của lực đàn hồi:
b) Thế năng đàn hồi:
c) Công thực hiện của lò xo:
thay số:
Công A<0 vì lực đàn hồi ngược với chiều biến dạng, công của lực đàn hồi là công cản.
\(\Delta l=4cm=0,04m\)
a)Độ cứng lò xo:
\(k=\dfrac{F}{\Delta l}=\dfrac{10}{0,04}=250\)N/m
b)Thế năng đàn hồi của lò xo bị nén lại 6cm:
\(W_t=\dfrac{1}{2}kx^2=\dfrac{1}{2}\cdot250\cdot0,06^2=0,45J\)
c)Độ biến thiên thế năng đàn hồi:
\(A=W_{đh1}-W_{đh2}=\dfrac{1}{2}kx'^2-0,45\)
\(=\dfrac{1}{2}\cdot250\cdot0,03^2-0,45=-0,3375J\)
Công này có tác dụng chống lại sự biến dạng.
Chọn A.
Ta có: F đ h = k . ∆ l ⇒ k = F đ h / ∆ l = 3/0,02 = 150 N/m.
Công do lực đàn hồi thực hiện khi lò xo được kéo dãn thêm từ 2 cm đến 4 cm có giá trị là:
A F đ h = 1 2 k ( ∆ l 1 ) 2 - 1 2 k ∆ l 2 2
Tóm tắt: \(k=100\)N/m;\(\Delta l=4cm=0,04m\)
\(F_{đh}=?\)
Bài giải:
Độ lớn lực đàn hồi:
\(F_{đh}=k\cdot\Delta l=100\cdot0,04=4N\)
Lời giải
+ Ta có độ biến dạng của lò xo so với vị
trí ban đầu: Δl=2cm=0,02m
Lực đàn hồi của lò xo khi đó: F d h = | k Δ l |
Ta suy ra độ cứng của lò xo: k = F d h Δ l = 3 0 , 02 = 150 N / m
=> Thế năng đàn hồi của lò xo tại vị trí đó: W t = 1 2 k Δ l 2 = 1 2 .150. 0 , 02 2 = 0 , 03 J
Đáp án: C
Áp dụng độ biến thiên thế năng
A = W t 1 − W t 2 = 1 2 k ( x 1 2 − x 2 2 ) = 1 2 .100 ( 0 , 02 2 − 0 , 04 2 ) = − 0 , 06 ( J )