Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\)
Gọi M là trung điểm AB \(\Rightarrow AB\perp OM\Rightarrow AB\perp\left(SOM\right)\)
\(\Rightarrow\widehat{SMO}\) là góc giữa mặt bên và đáy hay \(\widehat{SMO}=60^0\)
\(SO=OM.tan\widehat{SMO}=\dfrac{a}{2}.tan60^0=\dfrac{a\sqrt{3}}{2}\)
\(V=\dfrac{1}{3}SO.S_{ABCD}=\dfrac{1}{3}.\dfrac{a\sqrt{3}}{2}.a^2=\dfrac{a^3\sqrt{3}}{6}\)
Chọn B.
Gọi M là trung điểm của cạnh BC và H là trọng tâm của tam giác ABC.
Do S.ABC là hình chóp tam giác đều nên SH ⊥ (ABC)
=> (SA,(ABC))=(SA,AH)= S A H ^ = 45 0
Theo giả thiết tam giác ABC là tam giác đều cạnh a nên A H = 2 3 A M = a 3 3
Tam giác SHM vuông cân tại H nên A H = S H = a 3 3
Thể tích khối chóp S.ABC là
V = 1 3 . 1 2 . B C . A M . S H = 1 6 . a 3 2 . a 3 3 = a 3 12
Chọn B
Gọi H là trọng tâm tam giác ABC, khi đó
Góc giữa cạnh bên và mặt đáy là góc
Chọn D.
Ta có: SA=SB=AB=a 3
Gọi H là trung điểm của AB.
Do (SAB) ⊥ (ABCD) nên SH ⊥ (ABCD). Khi đó SH= 3 a 2
Diện tích đáy S A B C D = 3 a 2
Vậy thể tích khối chóp
V
S
.
A
B
C
D
=
1
3
S
H
.
S
A
B
C
D
=
3
a
2
2
Đáp án C
Gọi O là tâm đáy ABCD. Khi đó S O ⊥ A B C D
suy ra AO là hình chiếu vuông góc của SA lên mặt phẳng đáy. Khi đó góc giữa cạnh bên SA và đáy là S A O ^
Suy ra S A O ^ = 60 °
Vậy thể tích khối chóp là:
V = 1 3 . S O . S A B C D = a 3 6 6
Đáp án A
Gọi O là tâm hình vuông ABCD, M là trung điểm CD.
Khi đó SO là đường cao hình chóp, góc SMO là góc giữa mặt bên và mặt đáy của hình chóp.
Chọn A.
Ta có: Góc giữa cạnh bên và mặt phẳng đáy là S A H ^ = 60 °