K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2016

gọi UCLN(n^3+2n;n^4+3n^2+1)=d

=> n^3+2n chia hết cho d

và  n^4 +3n^2+1 chia hết cho d (1)  

=> n^4+2n^2 chia hết cho d(2)

từ (1)(2)=> n^2+1 chia hết cho d

           =>  (n^2+1)^2 chia hết cho d <=> n^4 +2n^2+1 chia hết cho d (3)

từ (2)(3)=> 1 chia hết cho d

=> d=1 hoặc -1

=> đpcm

      

18 tháng 5 2016

Mk chịu

Lớp 8 thì mk bó tay

21 tháng 7 2018

\(\left(2n-1\right)^3-\left(2n-1\right)\)

\(=\left(2n-1\right).\left[\left(2n-1\right)^2-1^2\right]\)

\(=\left(2n-1\right).\left(2n-1-1\right).\left(2n-1+1\right)\)

\(=\left(2n-2\right).\left(2n-1\right).2n\)

\(=2.\left(n-1\right).\left(2n-1\right).2n\)

Với \(n\)lẻ 

\(\Rightarrow n-1\)chẵn

\(\Rightarrow n-1⋮2\)

\(\Rightarrow2.\left(n-1\right)⋮4\)

\(\Rightarrow2.\left(n-1\right).2n⋮8\)

\(\Rightarrow2.\left(n-1\right).\left(2n-1\right).2n⋮8\)(1)

Với n chẵn

\(\Rightarrow n⋮2\)

\(\Rightarrow2n⋮4\)

\(\Rightarrow2.\left(n-1\right).2n⋮8\)

\(\Rightarrow2.\left(n-1\right).\left(2n-1\right).2n⋮8\)(1)

Từ (1) và (2)

\(\Rightarrow\left(2n-1\right)^3-\left(2n-1\right)⋮8\forall x\inℤ\)

                                                     đpcm

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

23 tháng 12 2016

Viết biểu thức không chuẩn, cái nào số hạng, cái nào là số mũ

26 tháng 11 2015

Ta có :

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left[n\left(n+3\right)\right].\left[\left(n+1\right)\left(n+2\right)\right]=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

ko là số cp