Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi Lê Thị Thanh Hoa, đây là toán chững minh chứ không phải dạng tìm x.
Câu này trong đề thi HSG toán 9 quận 9 tp HCM 2005-2006.
Đề : m,n là 2 số chính phương lẻ liên tiếp
Đặt m = (2k + 1)^2 => n = (2k + 3)^2
Ta có
A = mn - m - n + 1
=(m - 1)(n - 1)
= [(2k + 1)^2 - 1][(2k + 3)^2 - 1]
= [2k(2k + 2)].[(2k + 2)(2k + 4)]
= 16k(k + 1)(k + 1)(k + 2)
k(k + 1) chia hết cho 2
(k + 1)(k + 2) chia hết cho 2
=> A chia hết cho 16.2.2 = 64 (1)
Mà k(k + 1)(k + 2) chia hết cho 3
=> A chia hết cho 3 (2)
Từ (1)(2) => A chia hết cho BCNN(3,64) => A chia hết cho 192
Đặt n = 2k , ta có ( đk k >= 1 do n là một số chẵn lớn hơn 4)
\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)
\(=16k^4-32k^3-16k^2+32k\)
\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)
\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)
Nhận xét \(\left(k-1\right)k\left(k+1\right)\) là 3 số tự nhiên liên tiếp nên
\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3
Suy ra điều cần chứng minh
câu 1:
a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:
2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2
b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z
- a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.
mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.
vậy tích của 3 số nguyên liên tiếp chia hết cho 6.
c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z
- vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
- tích của 3 số nguyên liên tiếp chia hết cho 3.
- tích của 5 số nguyên liên tiếp chia hết cho 5.
vậy tích của 5 số nguyên liên tiếp chia hết cho 120.
câu 2:
a, a3 + 11a = a[(a2 - 1)+12] = (a - 1)a(a+1) + 12a
- (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
- 12a chia hết cho 6.
vậy a3 + 11a chia hết cho 6.
b, ta có a3 - a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1)
mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m3 - m) - m(n3 -n)
theo (1) mn(m2-n2) chia hết cho 3.
c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)
a,b lẻ nên suy ra: (a-1)(b-1) chia hết cho 4.
Ta đặt: a=(2k-1)2;b=(2k+1)2.
=>(m-1)=4k(k-1) (k thuộc Z)
(n-1)=4k(k+1).
=>(m-1)(n-1)=16k2(k-1)(k+1)
Mà k(k-1)(k+1) chia hết cho3 (3 số nguyên liên tiếp).
Do k(k-1)và k(k+1) chia hết cho 2
nên suy ra: k2(k+1)(k-1) chia hết cho 12.
=>(a-1)(b-1)=16k2(k+1)(k-1) chia hết cho 192 khi m,n là SCP lẻ liên tiếp.
ta chứng minh bài toán phụ a chia 8 dư 1
đặt a =x^2(x thuộc N)
vì a là số chính phương lẻ nên x lẻ
đặt x=2k+1
ta có: x^2=(2k+1)^2=(2k)^2+2.2k+1=4k^2+4k+1=4(k+k^2)+1
vì k và k^2 là 2 số cùng tính chẵn lẻ suy ra 4(k+k^2) chia hết cho 8 suy ra 4(k+k^2)+1 chia hết cho 8 dư 1(đpcm)
Theo đề bài suy ra a chia 8 dư 1, b chia 8 dư 1 suy ra a-1 chia hết cho 8, b-1 chia hết cho 8
suy ra (a-1)(b-1) chia hết cho 64
vì 1 số chính phương chia 3 dư 1 suy ra a-1, b-1 chia hết cho 3
suy ra (a-1)(b-1) chia hết cho 3
vì (3,64)=1 suy ra (a-1)(b-1) chia hết cho 192(đpcm)
vậy (a-1)(b-1) chia hết cho 192
Câu hỏi của Bảo Bình Đáng Yêu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo link này nhé!
Gọi d là ước chung của (m,mn+8) vì m lẻ => d lẻ.
Ta có m = kd (vì d là ước của m) => mn + 8 = kdn + 8
--> khd + 8 chia hết cho d mà khd chia hết cho d => 8 chia hết cho d --> d là ước của 8 do d lẻ => d = 1.
vậy m và mn + 8 là nguyên tố cùng nhau
1.n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
m; n là 2 số chính phương lẻ liên tiếp nên gọi m = (2k + 1)2 ; n = (2k+3)2
=> A = mn - m - n + 1 = (2k + 1)2. (2k +3)2 - (2k +1)2 - (2k +3)2 + 1
= (2k + 1)2 . [(2k +3)2 - 1] - [ (2k +3)2 - 1] = [(2k +1)2 - 1]. [(2k +3)2 - 1] = (2k + 1 - 1).(2k + 1 +1)(2k +3 + 1).(2k +3 -1)
= 2k.(2k +2).(2k +4).(2k +2) = 16.k.(k+1)2.(k+2)
+) Vì k; k+1; k+2 là 3 số tự nhiên liên tiếp => k(k+1).(k+2) chia hết cho 3
=> A chia hết cho 3
+) Chứng minh A chia hết cho 64:
Nếu k chẵn => k và k+ 2 chẵn => A chia hết cho 16.4 = 64
Nếu k lẻ => k+ 1 chẵn => (k+1)2 chia hết cho 4 => A chia hết cho 64
Vậy A chia hết cho BCNN (3; 64) = 192
tra loi giup mik cai cau duoi