Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{AB\cdot AC}{2}\)
nên \(AH\cdot BC=AB\cdot AC\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=CH\cdot BC\)
\(a\text{) }\)Áp dụng: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (a, b > 0). Dấu "=" xảy ra khi a = b.
\(\frac{1}{a^2+b^2}+\frac{1}{ab}=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2.\frac{\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\)
\(=6\left[\frac{1}{\left(a+b\right)^2}+\frac{27}{8}\left(a+b\right)+\frac{27}{8}\left(a+b\right)\right]-\frac{81}{2}\left(a+b\right)\)
\(\ge6.3\sqrt[3]{\frac{1}{\left(a+b\right)^2}.\frac{27}{8}\left(a+b\right).\frac{27}{8}\left(a+b\right)}-\frac{81}{2}\left(a+b\right)\)
\(=\frac{81}{2}-\frac{81}{2}\left(a+b\right)\)
Tương tự: \(\frac{1}{b^2+c^2}+\frac{1}{bc}\ge\frac{81}{2}-\frac{81}{2}\left(b+c\right)\)
\(\frac{1}{c^2+a^2}+\frac{1}{ca}\ge\frac{81}{2}-\frac{81}{2}\left(c+a\right)\)
Cộng theo vế ta được
\(A\ge3.\frac{81}{2}-81\left(a+b+c\right)=3.\frac{81}{2}-81=\frac{81}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}.\)
Vậy GTNN của A là \(\frac{81}{2}.\)
Ta có (a-b)²≥0 nên a²+b²≥2ab, tương tự b²+c²≥2bc, c²+a²≥2ca, cộng vế với vế rồi chia 2 2 vế ta có a²+b²+c²≥ab+bc+ca
a, b, c là 3 cạnh tam giác nên a+b>c → c(a+b)>c², tương tự b(a+c)>b², a(b+c)>a², cộng vế với vế ta có 2(ab+bc+ca)>a²+b²+c²
Áp dụng BĐT Cauchy cho 3 số không âm a^2 + b^2 + c^2 là ra nha bạn
\(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)
\(=\frac{c-a}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}+\frac{a-b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}\)
\(+\frac{b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}\)
\(=0\)
a) Xét tam giác ABC và tam giác HAC có:
BAC = AHC =90
ABC = HAC (cùng phụ với HAB)
=> ABC đồng dạng HAC (g.g)
b) Vì ABC đồng dạng HAC
=> AB/BC = AH/AC
=> AB.AC=BC.AH
c) Vì AB.AC = BC.AH
=> AB^2.AC^2= BC^2 . AH^2
Mà BC^2=AB^2+AC^2 (định lý pytago ở tam giác ABC vuông tại A)
=> AB^2.AC^2= (AB^2+AC)^2.AH^2
=> 1/AH^2 =1/AB^2 +1/AC^2
a) Xét \(\Delta ABC\) và \(\Delta HBA\) :
Có \(\widehat{BAC}=\widehat{BHA}\left(=90^0\right)\)
\(\widehat{B}chung\)
\(\Rightarrow\) \(\Delta ABC\) đồng dạng với \(\Delta HBA\) (g.g)
\(\Rightarrow\) \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)
\(\Rightarrow\) \(AB^2=HB\cdot BC\)
Xét \(\Delta ABC\) và \(\Delta HAC\):
Có \(\widehat{BAC}=\widehat{AHC}\left(=90^0\right)\)
\(\widehat{C}chung\)
\(\Rightarrow\)\(\Delta ABC\) đồng dạng với \(\Delta HAC\) (g.g) \(\Rightarrow\) \(\dfrac{AC}{HC}=\dfrac{BC}{AC}\) \(\Rightarrow\) \(AC\cdot AC=BC\cdot HC\) \(\Rightarrow\) \(AC^2=BC\cdot HC\) b)sử dụng đồng dạng và các câu sau có thể dựa vào các câu trc thay vào và chứng minh nha