Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(f\left(b\right)\) đồng biến nên nếu \(f\left(-8\right)>0\Rightarrow f\left(b\right)>0;\forall b>-8\)
\(\Rightarrow f\left(b\right)\le0\) có nhiều nhất 3 nghiệm nguyên thuộc (-12;12) là -11;-10;-9 (ktm yêu cầu đề bài)
Do đó \(f\left(-8\right)\le0\)
Hiểu đơn giản thì đếm từ -11 trở đi thêm 4 số nguyên ta sẽ chạm tới mốc -8
Đó là số 2 nha mọi người! giải thích:
( vì câu hỏi là số mấy nên sẽ chú ý vào các số )
-Có hai cây cầu: cầu 1 và cầu 2
-Có từ 1 con trở lên
1> {1,2}
Vậy cần số nào đó lớn hơn 1 trong hai số trên.Suy ra...Số hai là số phừ hợp với điều kiện trên
Có sai đâu nhỉ?
Dòng 2 từ trên xuống hình thứ nhất bạn nhân module \(3i\) vào 2 vế, khi đó vế phải là 12, còn vế trái:
\(\left|3i.iz_2-3i.1+3i.2i\right|=\left|-3iz_2-3i-6\right|=\left|\left(-3iz_2\right)-6-3i\right|\)
Dòng 2 từ dưới đếm lên hình 2:
\(I_1\left(-6;-10\right)\) ; \(I_2\left(6;3\right)\Rightarrow\overrightarrow{I_1I_2}=\left(12;13\right)\Rightarrow I_1I_2=\sqrt{12^2+13^2}\)
Một công thức tính độ dài vecto rất cơ bản
Ảnh 1