K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

a. (x + 3).(x2 - 1)

= x.x2 - x.1 + 3.x2 - 3.1

= x3 - x + 3x2 - 3

= x3 + 3x2 - x - 3

b. (3x + 2).(4x - 1)

= 3x.4x - 3x + 2.4x - 2

= 12x2 - 3x + 8x - 2

= 12x2 + 5x - 2

c. (2x - 3).(3x + 2)

= 2x.3x + 2x.2 - 3.3x - 3.2

= 6x2 + 4x - 9x - 6

= 6x2 - 5x - 6

d. (12x - 5).(4x + 1)

= 12x.4x + 12x - 5.4x - 5

= 48x2 + 12x - 20x - 5

= 48x2 - 8x - 5

e. (x - 3).(x2 + 3x + 9)

= x.x2 + x.3x + x.9 - 3x2 - 3.3x - 3.9

= x3 + 3x2 + 9x - 3x2 - 9x - 27

= x3 - 27 (Đây là dạng HĐT x3 - 33)

9 tháng 4 2020

Ta có : Q = x2 - 2xy -12x +y2 +12y + 36 + 5y2 -10y + 5 + 1976

               = [ x2 -2x(y + 6 ) + ( y + 6 )2 ] + 5 (y2 -2y +1 ) +1976

                = ( x- y - 6 )2 + 5 (y-1)2 + 1976

Vì ( x - y - 6)2 \(\ge\)0 với mọi x ; y ;5 .(y-1)2 \(\ge\)0 với mọi x ; y và 1976 > 0 

Nên biểu thức Q luôn nhận giá trị dương với mọi x ;y

9 tháng 4 2020

Q=x2+6y2−2xy−12x+2y+2017

Q=(x2-2xy+y2)-(12x-12y)+36+(5y2-10y+5)+1976

=(x-y)2-12(x-y)+36+5(y2-2y+1)+1976

=[(x-y)2-12(x-y)+36]+5(y-1)2+1976

=(x-y-6)2+5(y-1)2+1976

do (x-y-6)2 ≥ 0 ∀ x,y

(y-1)2 ≥ 0 ∀ y

=> (x-y-6)2+5(y-1)2+1976 ≥ 1976

=> Q≥ 1976

=> MinA=1976 khi

y-1=0

=>y=1

x-y-6=0

=>x-1-6=0

=>x-7=0

=>x=7

Vậy GTNN của Q =1976 khi x=7 và y=1

13 tháng 7 2016

a) 6x^2-11x+3                              b)2x^2+3x-27                      c)3x^2-8x+4

= 6x^2-2x-9x+3                            =2x^2-6x+9x-27                    =3x^2-6x-2x+4

=2x(3x-1)-3(3x-1)                         =2x(x-3)+9(x-3)                      =3x(x-2)-2(x-2)

=(2x-3)(3x-1)                               =(2x+9)(x-3)                           =(3x-2)(x-2)      

24 tháng 12 2021

\(A=BQ+R\\ \Leftrightarrow A:B=Q\left(\text{dư }R\right)\)

Ta có \(A:B=\left(2x^4+3x^3-5x^2-11x+8\right):\left(x^3-3x+1\right)\)

\(\Leftrightarrow A:B=\left(2x^4-6x^2+2x+3x^3-9x^2+3x+10x^2-16x+8\right):\left(x^3-3x+1\right)\\ \Leftrightarrow A:B=\left[\left(x^3-3x+1\right)\left(2x+3\right)+10x^2-16x+8\right]:\left(x^3-2x+1\right)\\ =2x+3\left(\text{dư }10x^2-16x+8\right)\\ \Leftrightarrow\left\{{}\begin{matrix}Q=2x+3\\R=10x^2-16x+8\end{matrix}\right.\)

20 tháng 8 2020

1. Ta có: \(3xy\left(a^2+b^2\right)+ab\left(x^2-9y^2\right)\)

\(=3xya^2+3xyb^2+abx^2+ab9y^2\)

\(=\left(3xya^2+abx^2\right)+\left(3xyb^2+ab9y^2\right)\)

\(=ax\left(3ya+bx\right)+3by\left(xb+3ya\right)\)

\(=\left(3ya+xb\right)\left(3yb+ax\right)\)

2.Check lại đề hộ mình nha:((

22 tháng 8 2020

Câu 2 nên sủa lại đề nha

2. xy(a2+2b2)+ab(2x2+y2)

=xya2+xy2b2+ab2x2+aby2

=(xya2+aby2)+(xy2b2+ab2x2)

=ay(ax+by)+2bx(by+ax)

=(ax+by(ay+2bx)

1 tháng 12 2016

Đặt fx=x3-3x2+ax

Để fx chia hết cho x+2<=> tồn tại một đa thức gx sao cho fx=gx.(x+2)

=>x3-3x2+ax=gx.(x+2) với mọi x  (1)

Thay x=-2 vào (1) ta được (-23)-3.(-2)2+a.(-2)=0

                                       <=>-8+12-2a=0

                                       <=>2a=4

                                        <=>a=2

24 tháng 10 2021

\(f\left(x\right)⋮g\left(x\right)\)

\(\Leftrightarrow x^4-3x^3+4x^2-x^2+3x-4+\left(a-3\right)x+\left(b+4\right)⋮x^2-3x+4\)

\(\Leftrightarrow\left(a,b\right)=\left(3;-4\right)\)