Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, M=\(\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)(ĐKXD: x>0, x#4, x#9)
=\(\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)^{ }}\)=\(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
Vậy.....
b, ta có x=11-6\(\sqrt{2}\)=\(\left(3-\sqrt{2}\right)^2\)
Thay vào M ta đươc:
M=\(\frac{\sqrt{\left(3-\sqrt{2}\right)^2}+1}{\sqrt{\left(3-\sqrt{2}\right)^2}-3}\)=\(\frac{3-\sqrt{2}+1}{3-\sqrt{2}-3}=\frac{4-\sqrt{2}}{-\sqrt{2}}=1-2\sqrt{2}\)
c,Để M<1<=> \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)<1 <=> \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)-1<0<=> \(\frac{4}{\sqrt{x}-3}\)<0<=> x<9(t/m x#9) mà x>0, x#4 => 0<x<9 và x#4
Vậy....
d, Để M∈Z <=> \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)∈Z<=>\(1+\frac{4}{\sqrt{x}-3}\)∈Z<=>\(\frac{4}{\sqrt{x}-3}\)∈Z<=> 4⋮\(\sqrt{x}-3\)<=>\(\sqrt{x}-3\)∈Ư(4)={\(\pm\)1,\(\pm\)2,\(\pm\)4}
<=>\(\sqrt{x}\) ∈ {2,4,5,1,7}
<=>x ∈ {4,16,25,1,49} mà x#4
=> x∈ {16,25,1,49}
vậy..
a/ \(P=\left[1-\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\left[\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-2}{\sqrt{x}+3}-\frac{9x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)
\(=\left(1-\frac{\sqrt{x}}{\sqrt{x}+3}\right):\left[\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)+\left(\sqrt{x}-2\right)^2-9x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)
\(=\left(\frac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}+3}\right):\left[\frac{9-x+x-4\sqrt{x}+4-9x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)
\(=\frac{3}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{13-4\sqrt{x}-9x}\)
\(=\frac{3\sqrt{x}-6}{13-4\sqrt{x}-9x}\)
b/ \(P=1\Rightarrow\frac{3\sqrt{x}-6}{13-4\sqrt{x}-9x}=1\Rightarrow3\sqrt{x}-6=13-4\sqrt{x}-9x\)
\(\Rightarrow9x+7\sqrt{x}-19=0\)
Mình k biết mình sai chỗ nào nữa, bạn xem giúp mình với
\(ĐKXĐ:\)
\(\hept{\begin{cases}x-9\ne0\\\sqrt{x}-2\ne0\\\sqrt{x}+3\ne0;x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne9\\x\ne4\\x\ge0\end{cases}}\)
Vậy...................................................
\(A=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}-\sqrt{x}-3}{\left(\sqrt{x}+3\right)}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{-3}{\sqrt{x}+3}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{x-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{-3}{\sqrt{x}+3}:\frac{9-x+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-3}{\sqrt{x}+3}:\frac{-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-3}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4-x}\)
\(=\frac{3\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(=\frac{3}{\left(2+\sqrt{x}\right)}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\\x\ne9\end{matrix}\right.\)
\(A=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\\ =\left(\frac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}\right):\left(\frac{9-x+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\\ =\frac{-3}{\sqrt{x}+3}:\frac{4-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\frac{-3}{\sqrt{x}+3}\cdot\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{3}{\sqrt{x}+2}\)
b) Ta có:
\(P=\frac{3}{\sqrt{x}+2}< 1\\ \Leftrightarrow\frac{3}{\sqrt{x}+2}-1< 0\\ \Leftrightarrow\frac{3-\left(\sqrt{x}+2\right)}{\sqrt{x}+2}< 0\\ \Leftrightarrow\frac{1-\sqrt{x}}{\sqrt{x}+2}< 0\\ \Leftrightarrow1-\sqrt{x}< 0\\ \Leftrightarrow\sqrt{x}>1\\ \Leftrightarrow x>1\)
Vậy với \(x>1;x\ne4;x\ne9\)thì P < 1
c) Để \(A\in Z\Leftrightarrow3⋮\sqrt{x}+2\Leftrightarrow\sqrt{x}+2\inƯ\left(3\right)\)
Ta có bảng sau
\(\sqrt{x}+2\) | 1 | -1 | 3 | -3 |
\(\sqrt{x}\) | -1 | -3 | 1 | -5 |
\(x\) | loại | loại | 1(tm) | loại |
Vậy...................
Để M có nghĩa thì \(\hept{\begin{cases}\sqrt{x}-3\ne0\\2-\sqrt{x}\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}}\)
ta có \(M=\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(M=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b.\(M=5=\frac{\sqrt{x}+1}{\sqrt{x}-3}\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)
Tui nhầm đề xíu, cái A kia phải là: A=\(\sqrt{\left(1-\sqrt{5}\right)^2}-\frac{5-2\sqrt{5}}{\sqrt{5}}\)
thảo nào rút gọn mãi nó chả mất căn :))
\(A=\sqrt{\left(1-\sqrt{5}\right)^2}-\frac{5-2\sqrt{5}}{\sqrt{5}}\)
\(=\sqrt{5}-1-\frac{5\sqrt{5}-10}{5}=\frac{5\sqrt{5}-5-5\sqrt{5}+10}{5}=\frac{5}{5}=1\)
Với \(x\ge0;x\ne4;9\)
\(P=\left(\frac{3\sqrt{x}+6}{x-4}+\frac{\sqrt{x}}{\sqrt{x}-2}\right):\frac{x-9}{\sqrt{x}-3}\)
\(=\left(\frac{3\sqrt{x}+6+\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}\right):\left(\sqrt{x}+3\right)\)
\(=\left(\frac{x+5\sqrt{x}+6}{x-4}\right):\left(\sqrt{x}+3\right)=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}{\left(x-4\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}-2}\)
b, \(2P-A< 0\Rightarrow\frac{2}{\sqrt{x}-2}-1< 0\)
\(\Leftrightarrow\frac{4-\sqrt{x}}{\sqrt{x}-2}< 0\Leftrightarrow\frac{\sqrt{x}-4}{\sqrt{x}-2}>0\)
TH1 : \(\hept{\begin{cases}\sqrt{x}-4>0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>16\\x>4\end{cases}\Leftrightarrow x>16}\)
TH2 : \(\hept{\begin{cases}\sqrt{x}-4< 0\\\sqrt{x}-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 16\\x< 4\end{cases}}\Leftrightarrow x< 4}\)
Kết hợp với đk vậy \(0\le x< 4;x>16\)
M = \(\frac{2\sqrt{x}-9x}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\left(\sqrt{x}+3\right)\left(3-\sqrt{x}\right)+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)}\)
=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{9-x+2x-3\sqrt{x}}{x-5\sqrt{x}+6}\)
=\(\frac{x-\sqrt{x}}{x-5\sqrt{x}+6}\)