Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên gửi mỗi câu hỏi một bài thôi để mọi người tiện trao đổi.
1. \(Z_L=200\sqrt{3}\Omega\), \(Z_C=100\sqrt{3}\Omega\)
Suy ra biểu thức của i: \(i=1,1\sqrt{2}\cos\left(100\pi t-\frac{\pi}{3}\right)A\)
Công suất tức thời: p = u.i
Để điện áp sinh công dương thì p > 0, suy ra u và i cùng dấu.
Biểu diễn vị trí tương đối của u và i bằng véc tơ quay ta có:
Như vậy, trong 1 chu kì, để u, i cùng dấu thì véc tơ u phải quét 2 góc như hình vẽ.
Tổng góc quét: 2.120 = 2400
Thời gian: \(t=\frac{240}{360}.T=\frac{2}{3}.\frac{2\pi}{100\pi}=\frac{1}{75}s\)
2. Khi nối tắt 2 đầu tụ điện thì cường độ dòng điện hiệu dụng không đổi \(\Rightarrow Z_1=Z_2\Leftrightarrow Z_C-Z_L=Z_L\Leftrightarrow Z_C=2Z_L\)
\(U_C=1,2U_d\Leftrightarrow Z_C=2Z_d\Leftrightarrow Z_C=2\sqrt{R^2+Z_L^2}\)
\(\Leftrightarrow2Z_L=\sqrt{R^2+Z_L^2}\Leftrightarrow R=\sqrt{3}Z_L\)
Khi bỏ tụ C thì cường độ dòng điện của mạch là: \(I=\frac{U}{Z_d}=\frac{U}{\sqrt{R^2+Z_L^2}}=\frac{220}{\sqrt{3.Z_L^2+Z_L^2}}=0,5\)
\(\Rightarrow Z_L=220\Omega\)
*) Từ hai biểu thức dòng điện, rút ra 2 kết luận sau: khi \(\omega\) thay đổi thì
+) I cực đại tăng \(\frac{I_2}{I_1}=\sqrt{\frac{3}{2}}\Rightarrow \frac{Z_1}{Z_2}=\sqrt{\frac{3}{2}}\)
+) Pha ban đầu của i giảm 1 góc bằng: \(\frac{\pi}{3}-\left(-\frac{\pi}{12}\right)=\frac{5\pi}{12}=75^0\)
tức là hai véc tơ biểu diễn Z1 và Z2 lệch nhau 75 độ, trong đó Z2 ở vị trí cao hơn
*) Dựng giản đồ véc-tơ:
Trong đó: \(\widehat{AOB}=75^0\);
Đặt ngay: \(Z_1=OB=\sqrt{\frac{3}{2}}\Rightarrow Z_2=1\)
Xét tam giác OAB có \(\widehat{AOB}=75^0;OA=1;OB=\sqrt{\frac{3}{2}}\) và đường cao OH.
Với trình độ của bạn thì thừa sức tính ngay được: \(OH=\frac{\sqrt{3}}{2}\)
\(\Rightarrow R=OH=\frac{\sqrt{3}}{2}\)
*) Tính \(Z_L,Z_C\):
\(Z_1^2=R^2+\left(Z_L-Z_C\right)^2;\left(Z_L< Z_C\right)\)
\(Z_2^2=R^2+\left(\sqrt{3}Z_L-\frac{Z_C}{\sqrt{3}}\right)^2\)
Thay số vào rồi giải hệ 2 ẩn bậc nhất, tìm được: \(Z_L=\frac{\sqrt{3}}{2};Z_C=\sqrt{3}\)
*) Tính
\(\frac{R^2L}{C}=\frac{R^2\cdot\left(L\omega_1\right)}{C\omega_1}=R^2Z_LZ_C\\ =\left(\frac{\sqrt{3}}{2}\right)^2\cdot\frac{\sqrt{3}}{2}\cdot\sqrt{3}=\frac{9}{4}\)
Ra $\frac{1}{2}$ ông ạ
Thầy tôi bảo có cách dùng giản đồ vector ngắn kinh khủng mà chưa ngộ ra.
\(Z_L=L\omega=\frac{25.10^{-2}}{\pi}.100\pi=25\Omega.\)
Mach co r, R va ZL khi đó \(Z=\sqrt{\left(R+r\right)^2+Z_L^2}=\sqrt{\left(10+15\right)^2+25^2}=25\sqrt{2}\Omega.\)
Cường độ dòng điện cực đại \(I_0=\frac{U_0}{Z}=\frac{100\sqrt{2}}{25\sqrt{2}}=4A.\)
Độ lệch pha giữa u và i được xác định thông qua \(\tan\varphi=\frac{Z_L}{R+r}=\frac{25}{15+10}=1\)\(\Rightarrow\varphi=\frac{\pi}{4}.\)
hay \(\varphi_u-\varphi_i=\frac{\pi}{4}.\) mà \(\varphi_u=0\Rightarrow\varphi_i=-\frac{\pi}{4}.\)
=> phương trình dao động của cường độ dòng xoay chiều là
\(i=4\cos\left(100\pi t-\frac{\pi}{4}\right)A.\)
1.
\(Z_L=\omega L = 250\Omega\)
\(\cos \varphi = \dfrac{R+r}{Z}\Rightarrow Z = \dfrac{100+100}{0,8}=250\Omega\)
\(Z=\sqrt{(R+r)^2+(Z_L-Z_C)^2}\)
\(\Rightarrow 250=\sqrt{(100+100)^2+(250-Z_C)^2}\)
Do u sớm pha hơn i nên suy ra \(Z_C=100\Omega\)
\(\Rightarrow C = \dfrac{10^-4}{\pi}(F)\)
Chọn B
2. Công suất tiêu thụ cực đại khi mạch cộng hưởng
\(\Rightarrow Z_{Cb}=Z_L=250\Omega\)
Mà \(Z_C=100\Omega <250\Omega\)
Suy ra cần ghép nối tiếp C1 với C và \(Z_{C1}=Z_{Cb}-Z_C=250=100=150\Omega\)
\(\Rightarrow C_1 = \dfrac{2.10^-4}{3\pi}(F)\)
Chọn D.
+ \(U_{AM}=I.Z_{AM}\), \(Z_{AM}\)không thay đổi, nên để \(U_{AM}\) đạt giá trị lớn nhất khi thay đổi C thì dòng điện Imax --> Xảy ra hiện tượng cộng hưởng: \(Z_L=Z_C\)
và \(I=\frac{U}{R+r}\)
Công suất của cuộn dây khi đó: \(P=I^2.r=\left(\frac{U}{R+r}\right)^2.r\) (*)
+ Nếu đặt vào 2 đầu AB một điện áp không đổi và nối tắt tụ C thì mạch chỉ gồm r nối tiếp với R (L không có tác dụng gì)
Cường độ dòng điện của mạch: \(I=\frac{25}{R+r}=0,5\Rightarrow R+r=50\)
Mà R = 40 suy ra r = 10.
Thay vào (*) ta đc \(P=\left(\frac{200}{50}\right)^2.10=160W\)
Bạn học đến điện xoay chiều rồi à. Học nhanh vậy, mình vẫn đang ở dao động cơ :(
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
Bài này rất cơ bản mà bạn.
a) \(Z_L=\omega.L=30\Omega\)
\(Z_C=\dfrac{1}{\omega C}=60\Omega\)
Tổng trở: \(Z=\sqrt{R^2+(Z_L-Z_C)^2}=\sqrt{40^2+(60-30)^2}=50\Omega\)
b) Điện áp hiệu dụng của mạch là: \(U=\dfrac{U_0}{\sqrt 2}=110(V)\)
Cường độ hiệu dụng: \(I=\dfrac{U}{Z}=\dfrac{110}{50}=2,2A\)
c) Công suất tiêu thụ của đoạn mạch: \(P=I^2.R=2,2^2.40=193,6W\)