K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2019

Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x;y\\\left(y-\sqrt{2}\right)^2\ge0\forall x;y\end{cases}}\Rightarrow\left(x+1\right)^2+\left(y-\sqrt{2}\right)^2\ge0\forall x;y\)

\(\Rightarrow\left(x+1\right)^2+\left(y-\sqrt{2}\right)^2+2008\ge2008\forall x;y\)

\(\Rightarrow N\ge2008\forall x;y\)

\(N=2008\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-\sqrt{2}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\y-\sqrt{2}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=\sqrt{2}\end{cases}}}\)

19 tháng 1 2019

 \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y-\sqrt{2}\right)^2\ge0\end{cases}}\text{Dấu }=\text{xảy ra khi}\hept{\begin{cases}x+1=0\\y-\sqrt{2}=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=\sqrt{2}\end{cases}}}\)

\(\Rightarrow MinN=2008\Leftrightarrow\hept{\begin{cases}x=-1\\y=\sqrt{2}\end{cases}}\)

\(M=3.1+\frac{1-\sqrt{2}^2}{1+1}=3+\frac{1-2}{2}=\frac{5}{2}\)

22 tháng 3 2018

Ta có : 

\(\left(x+1\right)^2\ge0\)\(\left(\forall x\inℤ\right)\)

\(\left(y-\sqrt{2}\right)^2\ge0\)\(\left(\forall y\inℤ\right)\)

\(\Rightarrow\)\(\left(x+1\right)^2+\left(y-\sqrt{2}\right)^2+2008\ge2008\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-\sqrt{2}\right)^2=0\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\y-\sqrt{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\sqrt{2}\end{cases}}}\)

Thay \(x=-1\) và \(y=\sqrt{2}\) vào \(M=3x+\frac{x^2-y^2}{x^2+1}\) ta được : \(M=3.\left(-1\right)+\frac{\left(-1\right)^2-\left(\sqrt{2}\right)^2}{\left(-1\right)^2+1}\)

\(M=-3+\frac{1-2}{1+1}\)

\(M=-3+\frac{-1}{2}\)

\(M=\frac{-7}{2}\)

Vậy : +) Giá trị của \(M=3x+\frac{x^2-y^2}{x^2+1}\) tại \(x=-1\) và \(y=\sqrt{2}\) là \(\frac{-7}{2}\)

         +) Giá trị nhỏ nhất của \(P=2008\) khi \(x=-1\) và \(y=\sqrt{2}\)

Chúc bạn học tốt ~ 

22 tháng 3 2018

x=0 vs y= 1

ok nha

không  bt đúng hay sai

5 tháng 3 2017

aaaaa

14 tháng 6 2018

Tham khảo tại đây nha

https://olm.vn/hoi-dap/question/1185924.html

Mk làm ở đây rồi 

AE nhớ k mk nha @@@@@@@@@@@_@@@@@@@@@@@@@@@@@

28 tháng 11 2016

\(A=\left|x-3\right|+\left|y+3\right|+2016\)

\(\left|x-3\right|\ge0\)

\(\left|y+3\right|\ge0\)

\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)

Dấu ''='' xảy ra khi \(x-3=y+3=0\)

\(x=3;y=-3\)

\(MinA=2016\Leftrightarrow x=3;y=-3\)

\(\left(x-10\right)+\left(2x-6\right)=8\)

\(x-10+2x-6=8\)

\(3x=8+10+6\)

\(3x=24\)

\(x=\frac{24}{3}\)

x = 8

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)Câu 6: Có bao nhiêu cặp...
Đọc tiếp

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. 

Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)

Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)

Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)

Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)

Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y

Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...

Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...

Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn 

 

0
9 tháng 11 2016

Câu 1:

Ta thấy:

\(\left(x-\frac{2}{5}\right)^2\ge0\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2\ge0\)

\(\left|2y+1\right|\ge0\)

\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|\ge0\)

\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\ge-2,5\)

hay \(A\ge-2,5\)

Dấu "=" xảy ra khi \(\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}\)

\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+1=0\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-1\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)

Vậy GTNN của A là -2,5 đạt được khi \(\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)

20 tháng 11 2016

Cảm ơn bạn nhiều nhé!

26 tháng 5 2020

1) 

Ta có: \(\left(x+3\right)^2\ge0;\left|y+1\right|\ge0\) với mọi số thực x; y 

=> \(\left(x+3\right)^2+\left|y+1\right|+5\ge0+0+5=5\)

Dấu "=" xảy ra <=> x + 3 = 0 và y + 1 = 0  <=> x = -3 và y = -1

=> \(\left(x+3\right)^2+\left|y+1\right|+5\) đạt giá trị bé nhất bằng 5  tại x = -3 và y = -1

=> \(\frac{2020}{\left(x+3\right)^2+\left|y+1\right|+5}\)đạt giá trị lớn nhất bằng \(\frac{2020}{5}=404\) tại x = -3 và y = -1 

 2) \(M=2x^4+3x^2y^2+y^4+y^2\)

\(=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2\)

\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)

\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)

5 tháng 10 2018

4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)

\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)

\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)

Tìm z thì dễ rồi