K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2019

\(\left|x+y\right|\text{nhỏ nhất }\Rightarrow x+y=0\Rightarrow x=-y\)

thay xy=1 và x+y=0, ta có: 

\(M=2x^2+2\left(-x^2\right)+3.1-\left(x+y\right)-3=4x^2=\left(2x\right)^2\)

3 tháng 1 2019

Easy mà:

Ta có: \(\left|x+y\right|\ge0\forall x,y\)  mà \(\left|x+y\right|\) nhỏ nhất nên \(\left|x+y\right|=0\Leftrightarrow x=-y\)

Thay vào M,ta có; \(M=2\left(-y\right)^2+2y^2+3.1-\left(-y\right)-y-3\)  (Thay x bởi -y)

\(=4y^2+3-3=4y^2\)

20 tháng 2 2018

Ta có: \(\left(x+y\right)^2\ge4xy=4\)

Mà (x+y)2 nhỏ nhất

\(\Rightarrow\left(x+y\right)^2=4\)

\(\Rightarrow\orbr{\begin{cases}x+y=2\\x+y=-2\end{cases}}\)

Lại có: \(M=3x^2-2x+3y^2-2y+6xy+1\)

\(=3\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1\)

\(=3\left(x+y\right)^2-2\left(x+y\right)+1\)

Thay vào mà tính

a: M=2(-2x-3xy^2+1)-3xy^2+1

=-4x-6xy^2+2-3xy^2+1

=-4x-9xy^2+3

b: Thay x=-2 và y=3 vào M, ta được:

M=2*(-2)-3*(-2)*3^2+1

=-4+1+6*9

=54-3

=51

23 tháng 12 2020

B) Ta có: 2x-2y-x2+2xy-y2

⇔ 2(x-y)-(x2-2xy+y2)

⇔ 2(x-y)-(x-y)2

⇔ (x-y)(2-x+y)

Đúng thì tick nhé

26 tháng 12 2020

câu a đâu