K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2023

Hôm nay olm sẽ hướng dẫn em giải bài này như sau

Biến đổi đưa bài toán trở thành dạng tìm điều kiện để phân số là một số nguyên em nhé

\(\dfrac{4}{m}\) - \(\dfrac{1}{n}\) = 1    ⇒ 4n - m = mn     ⇒m + mn = 4n    ⇒ m(1+n) = 4n

 m = \(\dfrac{4n}{1+n}\) (n \(\ne\) 0; -1)

\(\in\) Z ⇔ 4n ⋮ 1 + n ⇒ 4n + 4 - 4 ⋮ 1 + n ⇒ 4(n+1) - 4 ⋮ 1 + n

⇒  4 ⋮ 1 + n  ⇒ n + 1 \(\in\) { -4; -2; -1; 1; 2; 4}  

⇒ n \(\in\) { -5; -3; -2; 0; 1; 3} vì n \(\ne\) 0 ⇒ n \(\in\){ -5; -3; -2; 1; 3}

⇒ m \(\in\){ 5; 6; 8; 2; 3}

Vậy các cặp số nguyên m; n thỏa mãn đề bài lần lượ là:

(m; n) =(5; -5); (6; -3); ( 8; -2); (2; 1); ( 3; 3)

 

 

Bn ơi , đề bài sao lại ko có n ?

11 tháng 6 2021

\(Tham\) \(khảo\) \(nha!!!\)

\(\Rightarrow\)\(\dfrac{4}{m}-\dfrac{1}{n}=1\)

\(\Rightarrow\)\(\dfrac{4}{m}=1+\dfrac{1}{n}\)

\(\Rightarrow\)\(\dfrac{4}{m}=\dfrac{n+1}{n}\)

\(\Rightarrow\)\(4n=m\left(n+1\right)\)

\(\Rightarrow\)\(4n=mn+n\)

\(\Rightarrow\)\(4n-mn=m\)

\(\Rightarrow\)\(n\left(4-m\right)=m\)

\(\Rightarrow\)\(n;4-m\inƯ_{\left(m\right)}\)

\(xét\) \(riêng\) \(n_{\in}Ư_{\left(m\right)}\)

\(\Rightarrow m:n\)

1 tháng 5 2021

Do n=1 nên Z sẽ chia hết cho 1
Nên 4/m-1/ chia hết cho n
nên m chia hết cho n

19 tháng 12 2015

Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :

Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)

Từ (*) => ab = mnd2 ; [a, b] = mnd

=> (a, b).[a, b] = d.(mnd) = mnd2 = ab

=> ab = (a, b).[a, b] . (**)

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

2
4 tháng 8 2017

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

4 tháng 8 2017

cảm ơn bạn nha

mình k cho ban roi do