Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\dfrac{4}{\sqrt{7}-\sqrt{3}}+\dfrac{6}{3+\sqrt{3}}+\dfrac{\sqrt{7}-7}{\sqrt{7}-1}\)
\(=\sqrt{7}+\sqrt{3}+3-\sqrt{3}-\sqrt{7}\)
=3
Lời giải:
a) Ta thấy: \(a+b-2\sqrt{ab}=(\sqrt{a}-\sqrt{b})^2\geq 0, \forall a,b>0\)
\(\Rightarrow a+b\geq 2\sqrt{ab}>0\Rightarrow \frac{1}{a+b}\le \frac{1}{2\sqrt{ab}}\).
Vì $a> b$ nên dấu bằng không xảy ra . Tức \(\frac{1}{a+b}< \frac{1}{2\sqrt{ab}}\)
Ta có đpcm
b)
Áp dụng kết quả phần a:
\(\frac{1}{3}=\frac{1}{1+2}< \frac{1}{2\sqrt{2.1}}\)
\(\frac{1}{5}=\frac{1}{3+2}< \frac{1}{2\sqrt{2.3}}\)
\(\frac{1}{7}=\frac{1}{4+3}< \frac{1}{2\sqrt{4.3}}\)
.....
\(\frac{1}{4021}=\frac{1}{2011+2010}< \frac{1}{2\sqrt{2011.2010}}\)
Do đó:
\(\frac{\sqrt{2}-\sqrt{1}}{3}+\frac{\sqrt{3}-\sqrt{2}}{5}+...+\frac{\sqrt{2011}-\sqrt{2010}}{4021}\)
\(< \frac{\sqrt{2}-\sqrt{1}}{2\sqrt{2.1}}+\frac{\sqrt{3}-\sqrt{2}}{2\sqrt{3.2}}+\frac{\sqrt{4}-\sqrt{3}}{2\sqrt{4.3}}+....+\frac{\sqrt{2011}-\sqrt{2010}}{2\sqrt{2011.2010}}\)
\(=\frac{1}{2}-\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}-\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{2010}}-\frac{1}{2\sqrt{2011}}\)
\(=\frac{1}{2}-\frac{1}{2\sqrt{2011}}< \frac{1}{2}\) (đpcm)
\(A=3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)
\(=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}\)
\(=3\sqrt{2}\)
\(VT=4+\sqrt{11}+\dfrac{3}{2}-\dfrac{1}{2}\sqrt{7}-4-2\sqrt{7}-\dfrac{1}{2}\sqrt{7}+\dfrac{5}{2}\)
\(=4+\sqrt{11}-3\sqrt{7}\)