Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ∆ CMB có EF là đường trung bình của ∆.
=> EF // MB <=> EF // AB. (1)
Xét ∆ ADM có KI là đường trung bình của ∆.
=> KI // AM <=> KI // AB. (2)
Từ (1);(2) => Tứ giác EFIK là hình thang. (3)
Gọi giao của CM và AD là O.
Xét ∆ COA có EK là đương trung bình ∆.
=> EK // CA.
Lại có KI // AM
Mà CA hợp với AM góc 60 độ (∆ACM đều)
nên EK sẽ hợp với KI góc 60 độ. hay góc EKI = 60 độ.
Chưng minh tương tự với góc FIK. => góc EKI = góc FIK = 60 độ. (4)
Từ (3);(4) => hình thang có 2 góc ở đáy bàng nhau là hình thang cân. => đpcm
Bạn vẽ thêm hình nhé ^_^
dựa vào đâu mà bạn nói EK la đường trung bình của Tam giác COA ?
EF và GH kéo dài lần lượt cắt AB tại P và Q => P,Q là trung điểm của AM và MB (bạn tự chứng minh)
Ta có : CF = FM , CG = GB => FG là đường trung bình của tam giác CMB => FG // AB (1)
Tương tự ta chứng minh được EH cũng là đường trung bình của tam giác DAM => EH // AB (2)
Từ (1) và (2) suy ra EH // FG => EFGH là hình thang (*)
Vì P và Q là trung điểm của AM và MB nên góc EPM = góc HQM = góc CAM = 60 độ
Mà EH // AB nên góc EFH = góc HGF = 60 độ (**)
Từ (*) và (**) suy ra EFGH là hình thang cân.
khó vải