Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m và n là số tự nhiên => m , n ≥ 0
p là số nguyên tố
Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\) <=> p2 = ( m – 1 ).( m + n )
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p2
Chú ý : m – 1< m + n (1)
Do p là số nguyên tố nên p2 chỉ có các ước nguyên dương là 1, p và p2 (2)
Từ (1) và (2) ta có m – 1 = 1 và m + n = p2. Khi đó m = 2 và tất nhiên 2 + n = p2
Vậy p2 = n + 2 (Đpcm).
m và n là số tự nhiên => m , n ≥ 0
p là số nguyên tố
Thỏa mãn p/m−1 =m+n/p <=> p2 = ( m – 1 )( m + n )
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p2
Chú ý : m – 1< m + n ( 1 )
Do p là số nguyên tố nên p2 chỉ có các ước nguyên dương là 1, p và p2 ( 2 )
Từ ( 1 ) và ( 2 ) ta có m – 1 = 1 và m + n = p2.
Khi đó m = 2 và tất nhiên 2 + n = p2
Do đó A = p2 - n = 2
m và n là số tự nhiên => m , n ≥ 0
p là số nguyên tố
. . . . . . . . . . . p. . . . . . .m + n
Thỏa mãn ————– = ———– <=> p² = ( m – 1 )( m + n )
. . . . . . . . . .m – 1. . . . . . .p
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p²
Chú ý : m – 1< m + n ( * )
Do p là số nguyên tố nên p² chỉ có các ước nguyên dương là 1, p và p² ( ** )
Từ ( * ) và ( ** ) ta có m – 1 = 1 và m + n = p². Khi đó m = 2 và tất nhiên 2 + n = p² .
\(\frac{P}{m-1}=\frac{m+n}{p}\) dk tồn tại \(VT>0\Rightarrow m>1\)
\(\Leftrightarrow p^2=\left(m+n\right)\left(m-1\right)\)(*)
VT là bp số nguyên tố VP xẩy ra các trường hợp
TH1: p=(m+n)=(m-1)=> n=-1 (loại n tự nhiên)
TH2: Một trong hai số phải =1 có m>1=> m+n>1
=> m-1=1=> m=2
\(\Rightarrow P^2=\left(n+2\right)\left(2-1\right)=n+2\Rightarrow dpcm\)
VT là bp số nguyên tố vp xẩy ra các trường hợp
TH1: p={m+n}={m-1}=>n-1{loai n tu nhien}
TH2:mot trong 2 so phai =1 co m>1=>m+n>=>m-1=1=>m2
chúc bạn làm tốt
\(\frac{p}{m-1}=\frac{m+n}{p}\)
=> p2 = (m+ n)(m - 1)
Vì p \(\in P\RightarrowƯ\left(p\right)=\left\{1;p;p^2\right\}\)
=> Lập bảng xét các trường hợp
m + n | 1 | p | p2 |
m - 1 | p2 | p | 1 |
n | -p2 | -1 (loại) | p2 - 2 |
Khi n = - p2
Vì \(p\ge2\Rightarrow p^2\ge4\)(1)
=> n = - p2 \(\le\)-4 (loại)
Tương tự với n = p2 - 2 Từ (1) ta có p2 - 2 \(\ge2\)(thỏa mãn)
Vậy p2 = n + 2
m và n là số tự nhiên => m , n ≥ 0
p là số nguyên tố
. . . . . . . . . . . p. . . . . . .m + n
Thỏa mãn ————– = ———– <=> p² = ( m – 1 )( m + n )
. . . . . . . . . .m – 1. . . . . . .p
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p²
Chú ý : m – 1< m + n ( * )
Do p là số nguyên tố nên p² chỉ có các ước nguyên dương là 1, p và p² ( ** )
Từ ( * ) và ( ** ) ta có m – 1 = 1 và m + n = p². Khi đó m = 2 và tất nhiên 2 + n = p² .
Chúc bạn thành công trong học tập :
\(\frac{p}{m-1}=\frac{m+n}{p}\Leftrightarrow p^2=\left(m+n\right)\left(m-1\right)\)
\(\Rightarrow p^2⋮m-1\).Mà p là số nguyên tố nên \(p⋮m-1\)
\(\Rightarrow\orbr{\begin{cases}m-1=1\\m-1=p\end{cases}}\)
Nếu \(m-1=p\)thì \(m+n=m-1\Leftrightarrow n=-1\)(Vô lí vì \(n\inℕ\))
Vậy m - 1 = 1\(\Rightarrow m=2\)
Lúc đó: \(p^2=m+n=2+m\left(đpcm\right)\)
\(\frac{p}{m-1}=\frac{m+n}{p}\Rightarrow p^2=\left(m-1\right)\left(m+n\right)\Rightarrow p^2⋮\left(m-1\right)\)
mà p nguyên tố suy ra m-1\(\in\left\{1;p\right\}\)
Với m-1 = 1 suy ra m = 2 suy ra p2 = 1. (2+n) = n+2
Với m-1=p suy ra p2=p. ( m+n) suy ra p = m + n suy ra n = -1 ( loại)
Vậy p2 = n +2
=> p^2 = (m-1)(m+n). => m+n thuộc ước dương của p^2 . mà p là số nguyên tố => m+n thuộc p,1,p^2. mà m+n> m-1=> m+n = p^2 => m-1 =1 => m=2=> p^2 = n+2(đpcm)
tại sao lại m+n lại là ước dương