K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

a) Vì m, n, p là các số tự nhiên lẻ nên ta có thể đặt m = 2a + 1; n = 2b + 1; p = 2c + 1

Khi đó

 \(mn+np+pm=\left(2a+1\right)\left(2b+1\right)+\left(2b+1\right)\left(2c+1\right)+\left(2c+1\right)\left(2a+1\right)\)

\(=4ab+2a+2b+1+4bc+2b+2c+1+4ca+2c+2a+1\)

\(=4\left(ab+bc+ca+a+b+c\right)+3\)

Vậy thì mn + np + pm chia 4 dư 3.

b) Ta chứng minh một số chính phương n chia cho 4 chỉ có thể dư 0 hoặc 1. Thật vậy:

Nếu n là bình phương số chẵn thì n = (2k)2 = 4k2 chia hết 4

Nếu n là bình phương số lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 chia 4 dư 1.

Vậy do mn + np + pm chia 4 dư 3 nên mn + np + pm không là số chính phương.

20 tháng 3 2018

Sao cho \(\dfrac{PD}{PN}\)=\(\dfrac{PM}{PF}\)

Minhf viết nhầm

Ta có: \(U=mn\left(m+n\right)+np\left(n+p\right)+pm\left(p+m\right)+2mnp\)

\(=mn\left(m+n\right)+np\left(n+p+m\right)+pm\left(p+m+n\right)\)

\(=mn\left(m+n\right)+p\left(n+p+m\right)\left(n+m\right)\)

\(=\left(n+m\right)\left(m+p\right)\left(n+p\right)\)

23 tháng 8 2021

Đề yêu cầu gì vậy?