K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

a. Ta có: m<n

<=> 2m<2n (nhân cả hai vế với 2)

<=> 2m+1<2n+1 (cộng cả hai vế với 1) \(\xrightarrow[]{}\) đpcm

b. Ta có: m<n

<=> m-2<n-2 (cộng cả hai vế với -2)

<=> 4(m-2)<4(n-2) (nhân cả hai vế với 4) \(\xrightarrow[]{}\) đpcm

4 tháng 5 2017

c. Ta có: m<n

<=> -6m>-6n (nhân cả hai vế với -6)

<=> 3-6m>3-6n (cộng cả hai vế với 3) \(\xrightarrow[]{}\) đpcm

d. Ta có: m<n

<=> 4m<4n (nhân cả hai vế với 4)

<=> 4m+1<4n+1 (cộng cả hai vế với 1)

mà 4n+1<4n+5

=> 4m+1<4n+5 \(\xrightarrow[]{}đpcm\)

18 tháng 3 2018

a, vì m>n

=> m+7>n+7

b, vì m>n

=> -2m<-2n

=>-2m-8<-2n-8

c, vì m>n

=>m+1>n+1

mà m+3>m+1

=>m+3>n+1

phần d,e,f máy mình cùi nên không hiện ra phép tính. sr nhiều

18 tháng 3 2018

m>n

a) m+7 và m+7

ta có : m>n

=> m+7 > n+7

b) -2m+8 và -2n+8

ta có : m>n

=> -2m > -2n

=> -2m+8 > -2n+8

c) m+3 và m+1

ta có : 3 >1

=> m+3 > m+1

d) \(\dfrac{1}{2}\) \(\left(m-\dfrac{1}{4}\right)\)\(\dfrac{1}{2}\)\(\left(n-\dfrac{1}{4}\right)\)

ta có: m > n

=> \(m-\dfrac{1}{4}\) > \(n-\dfrac{1}{4}\)

=>\(\dfrac{1}{2}\left(m-\dfrac{1}{4}\right)\)>\(\dfrac{1}{2}\left(n-\dfrac{1}{4}\right)\)

e) \(\dfrac{4}{5}-6\)m và \(\dfrac{4}{5}-6n\)

ta có : m > n

=> -6m > -6n

=> \(\dfrac{4}{5}-6m>\dfrac{4}{5}-6n\)

f) \(-3\left(m+4\right)+\dfrac{1}{2}\)\(-3\left(n+4\right)+\dfrac{1}{2}\)

ta có : m > n

=> m=4 > n+4

=> -3(m+4) > -3(m+4)

=>\(-3\left(m+4\right)+\dfrac{1}{2}>-3\left(n+4\right)+\dfrac{1}{2}\)

4 tháng 5 2017

bài 1:

a) 4n+4+3n-6<19

<=> 7n-2<19

<=> 7n<21 <=> n< 3

b) n\(^2\) - 6n + 9 - n\(^2\) + 16\(\leq\)43

-6n+25\(\leq\)43

-6n\(\leq\)18

n\(\geq\)-3

19 tháng 7 2017

bài 1 ở chỗ nào vậy

10 tháng 8 2018

Ngân ơi, bài ai giao thế ?

10 tháng 8 2018

a,

\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\\ =\left(n^2+3n-1\right)n+\left(n^2+3n-1\right)2-n^3+2\\ =n^3+3n^2-n+2n^2+6n-2-n^3+2\\ =5n^2+5n\\ =5\cdot\left(n^2+n\right)⋮5\\ \RightarrowĐpcm\)

b,

\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\\ =\left(6n+1\right)n+\left(6n+1\right)5-\left(3n+5\right)2n-\left(3n+5\right)\\ =6n^2+n+30n+5-6n^2-10n-3n-5\\ =18n⋮2\\ \RightarrowĐpcm\)

11 tháng 9 2017

Bài 1:

a, Ta có:

\(\left(a+b+c\right)^2-\left(ab+bc+ca\right)=0\Leftrightarrow a^2+b^2+c^2+ab+bc+ca=0\)\(\Leftrightarrow2a^2+2b^2+2c^2+2ab+2bc+2ca=0\)

\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2=0\Leftrightarrow a+b=b+c=c+a=0\)

\(\Leftrightarrow a=b=c=0\)

Vậy điều kiện để phân thức M được xác định là a, b, c không đồng thời = 0

b, Ta có:

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

Đặt: \(a^2+b^2+c^2=x,ab+bc+ca=y\)

=> \(\left(a+b+c\right)^2=x+2y\)

Ta cũng có:

\(M=\dfrac{x\left(x+2y\right)+y^2}{x+2y-y}=\dfrac{x^2+2xy+y^2}{x+y}=\dfrac{\left(x+y\right)^2}{x+y}=x+y\)

\(=a^2+b^2+c^2+ab+bc+ca\)

a: \(=24x^{2m-1+3-2m}y^{6-3m}-\dfrac{24}{7}y^{3n-7+6-3n}\cdot x^{3-2m}+8x^{3-2m+2m}\cdot y^{6-3n+3m}-24x^{3-2m}y^{6-2n+2}\)

\(=24x^2y^{6-3m}-\dfrac{24}{7}x^{3-2m}\cdot y^{-1}+8x^3y^{-3n+3m+6}-24x^{3-2m}y^{-2n+8}\)

b: \(=2x^{2n+1-2n}-6x^{2n+2-2n}+3x^{2n-1+1-2n}-9x^{2n-1+2-2n}\)

\(=2x-6x^2+3-9x\)

\(=-6x^2-7x+3\)

Bài 2: 

a: \(\Leftrightarrow x^2+3x-x^2-11=0\)

=>3x-11=0

=>x=11/3

b: \(\Leftrightarrow x^3+8-x^3-2x=0\)

=>8-2x=0

=>x=4

Bài 3:

a: Sửa đề: \(\left(x+y\right)^2-\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)

\(=2x\cdot2y=4xy\)

b: \(=\left(7n-2-2n+7\right)\left(7n-2+2n-7\right)\)

\(=\left(9n-9\right)\left(5n+5\right)=9\left(n-1\right)\left(5n+5\right)⋮9\)