K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2020

M = 51 + 52 + 53 + ... + 519 + 520 + 521

M = (51 + 52 + 53) + (54 + 55 + 56 ) + ... + (519 + 520 + 521)

M = 5( 1 + 5 + 52) + 54(1 + 5 + 52) + ... + 519(1 + 5 + 52)

M = 5.31 + 54.31 + ... + 519.31

M = 31(5 + 54 + ... + 519 31 (ĐPCM)

21 tháng 10 2021

\(C=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)...+\left(5^{17}+5^{18}+5^{19}+5^{20}\right)\\ C=5\left(1+5+5^2+5^3\right)+5^5\left(1+5+5^2+5^3\right)...+5^{17}\left(1+5+5^2+5^3\right)\\ C=5\cdot156+5^5\cdot156+...+5^{17}\cdot156\\ C=156\left(5+5^5+...+5^{17}\right)\\ C=12\cdot13\left(5+5^5+...+5^{17}\right)⋮17\)

21 tháng 10 2021

(5 +53)+(52+54)...+(518+520)

5(1+52)+52(1+52)+...+518(1+52)

(1+52)(5+52+...+518)

26(5+52+...+518)⋮13

vậy (5 +53)+(52+54)...+(518+520)⋮13

 

4 tháng 5 2019
 

Ta có: \(\frac{1}{50}\) >\(\frac{1}{100}\)

\(\frac{1}{51}\)>\(\frac{1}{100}\)

\(\frac{1}{52}\)>\(\frac{1}{100}\)

..................

\(\frac{1}{99}\)>\(\frac{1}{100}\)

=>\(\frac{1}{50}\)+\(\frac{1}{51}\)+.............+\(\frac{1}{99}\)>\(\frac{1}{100}\).50=\(\frac{1}{2}\)(50 là số số hạng  của S nha)

=>S>\(\frac{1}{2}\)

   
21 tháng 6 2023
   

F = 7 + 72 + 73 + 74 + ..... + 7100 

F= 7+(1+7)+73+(1+7)+...+799+(1+7)

F = 7x8+73x8+...+799x8

F= 8x(7+73+...+799)

mà 8 chia hết 8 => 8(7+73+...+799) chia hết 8

Vậy F chia hết cho 8

21 tháng 6 2023

2)

\(F=7+7^2+7^3+7^4+...+7^{100}\\ F=7\cdot\left(1+7\right)+7^3\cdot\left(1+7\right)+.....+7^{99}\cdot\left(1+7\right)\\F=7\cdot8+7^3\cdot8+.....+7^{99}\cdot8\\ F=8\cdot\left(7+7^3+....+7^{99}\right)\\ =>F⋮8\) 

AH
Akai Haruma
Giáo viên
5 tháng 5 2021

Lời giải:

Hiển nhiên \(S>0\)

\(S=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{51}+\frac{1}{51}+...+\frac{1}{51}=\frac{50}{51}<1\)

Do đó $0< S<1$ nên $S$ không là số tự nhiên.