K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

Bạn chú ý cách viết phương trình.

Phương trình chỉ có dạng f(x)=g(x) thôi, không có dạng A=f(x)=g(x) như bạn viết.

\(VT=\left[8\left(x+\frac{1}{x}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2\right]+4\left(x^2+\frac{1}{x^2}\right)^2\)

\(=4\left(x+\frac{1}{x}\right)^2\left(2-x^2-\frac{1}{x^2}\right)+4\left(x^2+\frac{1}{x^2}\right)^2\)

\(=-4\left(x+\frac{1}{x}\right)^2\left(x-\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2\)

\(=-4\left(x^2-\frac{1}{x^2}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2\)

\(=-4x^4+8-\frac{4}{x^4}+4x^4+8+\frac{4}{x^4}\)

\(=16\)

Phương trình đã cho trở thành

\(\left(x+4\right)^2=16\\ \Leftrightarrow\orbr{\begin{cases}x+4=-4\\x+4=4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-8\\x=0\end{cases}}\)

9 tháng 8 2019

tổng 2 số là 150, tổng của 1/6 số này và 1/9 số kia = 18. Tìm 2 số đó

14 tháng 8 2017

dễ mà bn

1 tháng 7 2016

Ta có: \(\left(x^2-\frac{1}{x^2}\right):\left(x^2+\frac{1}{x^2}\right)=a=>\left(\frac{x^4-1}{x^2}\right):\left(\frac{x^4+1}{x^2}\right)=a\)

\(=>\frac{x^4-1}{x^2}.\frac{x^2}{x^4+1}=a=>\frac{x^4-1}{x^4+1}=a=>x^4-1=a\left(x^4+1\right)=ax^4+a\)

\(=>x^4-ax^4=a+1=>x^4=\frac{a+1}{1-a}\)

Thay vào M,ta có:

\(M=\left(x^4-\frac{1}{x^4}\right):\left(x^4+\frac{1}{x^4}\right)=\left(\frac{a+1}{1-a}-\frac{1}{\frac{a+1}{1-a}}\right):\left(\frac{a+1}{1-a}+\frac{1}{\frac{a+1}{1-a}}\right)\)

\(=\left(\frac{a+1}{1-a}-\frac{1-a}{a+1}\right):\left(\frac{a+1}{1-a}+\frac{1-a}{a+1}\right)=\frac{\left(a+1\right)^2-\left(1-a\right)^2}{\left(1-a\right)\left(a+1\right)}:\frac{\left(a+1\right)^2+\left(1-a\right)^2}{\left(1-a\right)\left(a+1\right)}\)

\(=\frac{\left(a+1\right)^2-\left(1-a\right)^2}{\left(1-a\right)\left(a+1\right)}.\frac{\left(1-a\right)\left(a+1\right)}{\left(a+1\right)^2+\left(1-a\right)^2}=\frac{\left(a+1\right)^2-\left(1-a\right)^2}{\left(a+1\right)^2+\left(1-a\right)^2}\)

\(=\frac{a^2+2a+1-\left(1-2a+a^2\right)}{a^2+2a+1+1-2a+a^2}=\frac{a^2+2a+1-1+2a-a^2}{a^2+2a+1+1-2a+a^2}=\frac{4a}{2a^2+2}=\frac{2.2a}{2.\left(a^2+1\right)}=\frac{2a}{a^2+1}\)

Vậy \(M=\frac{2a}{a^2+1}\)

2 tháng 7 2016

Làm hộ mk, phân tích đa thức thành nhân tử

a^4   b^4   c^4 - 2*a^2*b^2 - 2*b^2*c^2 - 2*c^2*a^2

27 tháng 3 2020

a) \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{8}+\frac{2x-1}{12}\)

<=> \(\frac{x}{4}+\frac{5}{4}-\frac{2x}{3}+1=\frac{6x}{8}-\frac{1}{8}+\frac{2x}{12}-\frac{1}{12}\)

<=> \(-\frac{4}{3}x=-\frac{59}{24}\)

<=> \(x=\frac{59}{32}\)

Vậy S = { 59/32}

b) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)

<=> \(\frac{x^2+14x+40}{12}-\frac{-x^2-2x+8}{4}=\frac{x^2+8x-20}{3}\)

<=> \(\left(\frac{x^2}{12}+\frac{x^2}{4}-\frac{x^2}{3}\right)+\left(\frac{14}{12}x+\frac{2}{4}x-\frac{8}{3}x\right)=-\frac{20}{8}+\frac{8}{4}-\frac{40}{12}\)

<=> \(-x=-8\)

<=> x = 8 

Vậy S = { 8 }

12 tháng 3 2015

Làm phép chia (ĐK x khác 0) được (x^4 - 1)/(x^4 + 1) = (x^4 + 1 - 2)/(x^4 + 1) = 1 - 2/(x^4 + 1)

Vì a là hằng số nên 2/(x^4 + 1) là số nguyên

=> Để 2/(x^4 + 1) nguyên thì x^4 + 1 phải là ước của 2

mà x^4 + 1 > 0 với mọi x

Các ước tự nhiên của 2 là 1; 2

=> x^4+1 = 1 <=> x = 0 (loại); x^4 + 1 = 2 <=> x = 1 (thỏa mãn)

Thế vào M được M = 0