K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2019

Đáp án C

Gọi F là hình chiếu của A' lên mp (ABC), Nên góc A ' A F ^  là góc tạo bởi cạnh bên của AA' với (ABC),  ⇒ A ' A F ^ = 30 0 ⇒ A F = A A ' cos 30 0 = 3 2 a ⇒

 F là trung điểm của BC  , gọi D,E là hình chiếu của F, B lên AC,H là hình chiếu của F lên AD. Dễ dàng chứng minh được FH là hình chiếu của F trên (ACC'A'), Ta có

d B , A C C ' A ' = 2 d F , A C C ' A ' = 2 F H .

A ' F = A A ' . c o s 30 0 = 1 2 a ; F D = 1 2 B E = 3 4 a

1 F H 2 = 1 A F 2 + 1 F D 2 ⇒ F H = a 21 7

8 tháng 1 2018

Đáp án đúng : B

2 tháng 10 2018

Đáp án B.

Do H là trung điểm AB nên  d B ; A C C ' A ' d H ; A C C ' A ' = B A H A = 2

  ⇒ d B ; A C C ' A ' = 2 d d H ; A C C ' A '

Ta có A H ' ⊥ A B C  nên  A A ' , ( A B C ) ⏜ = A ' A , H A ⏜ = A ' A H ⏜ = 60 °

Gọi D là trung điểm của AC thì B D ⊥ A C .

 Kẻ  H E ⊥ A C , E ∈ A C → H E / / B D

Ta có A C ⊥ A ' H A C ⊥ H E ⇒ A C ⊥ A ' H E ⊥ A C C ' A '  

Trong A ' H E  kẻ  H K ⊥ A ' E , K ∈ A ' E ⇒ H K ⊥ A C C ' A '

Suy ra

d H ; A C C ' A ' = H K ⇒ 2 d B ; A C C ' A ' = 2 H K

Ta có  B D = 2 a 3 2 = a 3 ⇒ H E = 1 2 B D = a 3 2

Xét tam giác vuông A ' A H  có  A H ' = A H . tan 60 ° = a 3

Xét tam giác vuông  A ' H E có   1 H K 2 = 1 A ' H 2 + 1 H E 2 = 1 a 3 2 + 1 a 3 2 2 = 5 3 a 2 ⇒ H K = a 15 5 .

Vậy d B ; A C C ' A ' = 2 H K = 2 a 15 5  

1 tháng 1 2019

Đáp án A

Khoảng cách giữa hai mặt đáy là h = AH = A’H.tan A A ' H ^ = a 3 2 . tan 30 0 = a 2

14 tháng 12 2018

Đáp án đúng : C

23 tháng 8 2019

 

10 tháng 4 2018

Đáp án D

Ta có  d ( AA ' , B C ) = d ( A A ' , ( B B ' C ' C ) ) = d ( A ' , ( B B ' C ' C ) )

Gọi M và M’ lần lượt là trung điểm BC và B’C’, G là trọng tâm của tam giác ABC

Theo giả thiết ta có B C ⊥ A M B C ⊥ A ' G ⇒ B C ⊥ ( A A ' G ) ⇒ B C ⊥ A A ' , nên tứ giác BB’C’C là hình chữ nhật có cạnh BC = a

Vì 

V A ' A B C = 1 3 A ' G . S Δ A B C = 1 3 V L T = a 3 3 12 ⇒ A ' G = a ⇒ A A ' = A G 2 + A ' G 2 = 2 a 3

  V A ' B B ' C ' C = 2 3 V L T = a 3 3 6 = 1 3 d ( A ' , ( B B ' C ' C ) ) . S B B ' C ' C ⇒ d ( A ' , ( B B ' C ' C ) ) = 3 a 2

21 tháng 8 2019

Đáp án D

Ta có d ( AA ' , B C ) = d ( A A ' , ( B B ' C ' C ) ) = d ( A ' , ( B B ' C ' C ) )

Gọi M và M’ lần lượt là trung điểm BC và B’C’, G là trọng tâm của tam giác ABC

Theo giả thiết ta có B C ⊥ A M B C ⊥ A ' G ⇒ B C ⊥ ( A A ' G ) ⇒ B C ⊥ A A ' , nên tứ giác BB’C’C là hình chữ nhật có cạnh BC = a

Vì 

V A ' A B C = 1 3 A ' G . S Δ A B C = 1 3 V L T = a 3 3 12 ⇒ A ' G = a ⇒ A A ' = A G 2 + A ' G 2 = 2 a 3

⇒ S B B ' C ' C = 2 a 2 3

Có  V A ' B B ' C ' C = 2 3 V L T = a 3 3 6 = 1 3 d ( A ' , ( B B ' C ' C ) ) . S B B ' C ' C ⇒ d ( A ' , ( B B ' C ' C ) ) = 3 a 2

Chọn D

12 tháng 2 2018

Đáp án C

Ta dễ dàng chứng minh được  A A ' / / B C C ' B '

⇒ d A A ' ; B C = d A A ' ; B C C ' B ' = d A ; B C C ' B '

Gọi G là trọng tâm của tam giác ABC. Suy ra A ' G ⊥ A B C .

Ta có   S Δ A B C = a 2 3 4

  ⇒ V A B C . A ' B ' C ' = A ' G . S Δ A B C ⇔ A ' G = V A B C . A ' B ' C ' S Δ A B C = a 3 3 4 : a 2 3 4 = a

Lại có

A M = a 3 2 ⇒ A G = 2 3 A M = a 3 3 ⇒ A A ' = A ' G 2 + A G 2 = 2 a 3 3

 Ta luôn có V A ' . A B C = 1 3 V A B C . A ' B ' C ' = 1 3 . a 3 3 4 = a 3 3 12 .

Mà V A B C . A ' B ' C ' = V A ' . A B C + V A ' . B C C ' B '  

⇒ V A ' . B C C ' B ' = V A B C . A ' B ' C ' − V A ' . A B C = a 3 3 4 − a 3 3 12 = a 3 3 6 .

Gọi M,M' lần lượt là trung điểm của BC và B'C'. Ta có B C ⊥ A M , B C ⊥ A ' G ⇒ B C ⊥ A M M ' A ' ⇒ B C ⊥ M M ' . Mà M M ' / / B B '  nên B C ⊥ B B ' ⇒ B C C ' B '  là hình chữ nhật

  ⇒ S B C C ' B ' = B B ' . B C = 2 a 3 3 . a = 2 a 2 3 3 .

 Từ

V A ' . B C C ' B ' = 1 3 d A ' ; B C C ' B ' . S B C C ' B ' ⇔ d A ' ; B C C ' B ' = 3 V A ' . B C C ' B ' S B C C ' B '  

⇒ d A ' ; B C C ' B ' = a 3 3 2 : 2 a 2 3 3 = 3 a 4 . Vậy d A A ' ; B C = 3 a 4 .

21 tháng 8 2017

Đáp án A